新疆烏魯木齊仟葉學(xué)校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
新疆烏魯木齊仟葉學(xué)校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
新疆烏魯木齊仟葉學(xué)校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
新疆烏魯木齊仟葉學(xué)校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
新疆烏魯木齊仟葉學(xué)校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

新疆烏魯木齊仟葉學(xué)校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖是由若干個(gè)相同的小正方體搭成的一個(gè)幾何體的主視圖和俯視圖,則所需的小正方體的個(gè)數(shù)最少是()A. B. C. D.2.若M(2,2)和N(b,﹣1﹣n2)是反比例函數(shù)y=的圖象上的兩個(gè)點(diǎn),則一次函數(shù)y=kx+b的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限3.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A、B的坐標(biāo)分別為(,0),(0,1),把Rt△AOB沿著AB對(duì)折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為()A. B. C. D.4.如圖,夜晚,小亮從點(diǎn)A經(jīng)過路燈C的正下方沿直線走到點(diǎn)B,他的影長(zhǎng)y隨他與點(diǎn)A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為()A. B.C. D.5.一個(gè)幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.6.下列說法正確的是()A.負(fù)數(shù)沒有倒數(shù)B.﹣1的倒數(shù)是﹣1C.任何有理數(shù)都有倒數(shù)D.正數(shù)的倒數(shù)比自身小7.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣28.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元9.第24屆冬奧會(huì)將于2022年在北京和張家口舉行,冬奧會(huì)的項(xiàng)目有滑雪(如跳臺(tái)滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是()A. B. C. D.10.如圖所示的四邊形,與選項(xiàng)中的一個(gè)四邊形相似,這個(gè)四邊形是()A. B. C. D.11.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長(zhǎng)為()A.2π B.4π C.5π D.6π12.如圖是一個(gè)由4個(gè)相同的正方體組成的立體圖形,它的左視圖為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,菱形ABCD的面積為120cm2,正方形AECF的面積為50cm2,則菱形的邊長(zhǎng)____cm.14.若⊙O所在平面內(nèi)一點(diǎn)P到⊙O的最大距離為6,最小距離為2,則⊙O的半徑為_____.15.已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.16.在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標(biāo)為_______.

.17.如圖,邊長(zhǎng)一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.18.如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.(1)計(jì)算△ABC的周長(zhǎng)等于_____.(2)點(diǎn)P、點(diǎn)Q(不與△ABC的頂點(diǎn)重合)分別為邊AB、BC上的動(dòng)點(diǎn),4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡(jiǎn)要說明點(diǎn)P、Q的位置是如何找到的(不要求證明).___________________________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對(duì)稱、旋轉(zhuǎn)等方法可以計(jì)算等分正多邊形面積的方案.(1)請(qǐng)聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個(gè)、3個(gè)、4個(gè)全等三角形;(2)如圖④,等邊△ABC邊長(zhǎng)AB=4,點(diǎn)O為它的外心,點(diǎn)M、N分別為邊AB、BC上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長(zhǎng)記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長(zhǎng)AB=4,點(diǎn)P為邊CA延長(zhǎng)線上一點(diǎn),點(diǎn)Q為邊AB延長(zhǎng)線上一點(diǎn),點(diǎn)D為BC邊中點(diǎn),且∠PDQ=120°,若PA=x,請(qǐng)用含x的代數(shù)式表示△BDQ的面積S△BDQ.20.(6分)先化簡(jiǎn),再求值:,其中m是方程的根.21.(6分)某工程隊(duì)承擔(dān)了修建長(zhǎng)30米地下通道的任務(wù),由于工作需要,實(shí)際施工時(shí)每周比原計(jì)劃多修1米,結(jié)果比原計(jì)劃提前1周完成.求該工程隊(duì)原計(jì)劃每周修建多少米?22.(8分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷售價(jià)為120元時(shí),每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.設(shè)每件童裝降價(jià)x元時(shí),每天可銷售______件,每件盈利______元;(用x的代數(shù)式表示)每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請(qǐng)說明理由.23.(8分)為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為度;(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.24.(10分)如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.(1)求反比例函數(shù)y=的表達(dá)式;(2)在x軸上是否存在一點(diǎn)P,使得S△AOP=S△AOB,若存在,求所有符合條件點(diǎn)P的坐標(biāo);若不存在,簡(jiǎn)述你的理由.25.(10分)某學(xué)校環(huán)保志愿者協(xié)會(huì)對(duì)該市城區(qū)的空氣質(zhì)量進(jìn)行調(diào)查,從全年365天中隨機(jī)抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中提供的信息解答下列問題:AQI指數(shù)質(zhì)量等級(jí)天數(shù)(天)0-50優(yōu)m51-100良44101-150輕度污染n151-200中度污染4201-300重度污染2300以上嚴(yán)重污染2(1)統(tǒng)計(jì)表中m=,n=,扇形統(tǒng)計(jì)圖中,空氣質(zhì)量等級(jí)為“良”的天數(shù)占%;(2)補(bǔ)全條形統(tǒng)計(jì)圖,并通過計(jì)算估計(jì)該市城區(qū)全年空氣質(zhì)量等級(jí)為“優(yōu)”和“良”的天數(shù)共多少?26.(12分)如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:1.(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)(測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.4°≈2)27.(12分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.求證:△ABE≌△CAD;求∠BFD的度數(shù).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解題分析】

主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【題目詳解】綜合主視圖和俯視圖,底層最少有個(gè)小立方體,第二層最少有個(gè)小立方體,因此搭成這個(gè)幾何體的小正方體的個(gè)數(shù)最少是個(gè).故選:B.【題目點(diǎn)撥】此題考查由三視圖判斷幾何體,解題關(guān)鍵在于識(shí)別圖形2、C【解題分析】

把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根據(jù)k、b的值確定一次函數(shù)y=kx+b的圖象經(jīng)過的象限.【題目詳解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,故選C.【題目點(diǎn)撥】本題考查了反比例函數(shù)圖象的性質(zhì)以及一次函數(shù)經(jīng)過的象限,根據(jù)反比例函數(shù)的性質(zhì)得出k,b的符號(hào)是解題關(guān)鍵.3、B【解題分析】

連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【題目詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),

故選B.【題目點(diǎn)撥】本題考查翻折變換、坐標(biāo)與圖形的性質(zhì)、等邊三角形的判定和性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是發(fā)現(xiàn)特殊三角形,利用特殊三角形解決問題.4、A【解題分析】設(shè)身高GE=h,CF=l,AF=a,當(dāng)x≤a時(shí),在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個(gè)函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長(zhǎng)將隨著離燈光越來越近而越來越短,到燈下的時(shí)候,將是一個(gè)點(diǎn),進(jìn)而隨著離燈光的越來越遠(yuǎn)而影長(zhǎng)將變大.故選A.5、D【解題分析】試題分析:由主視圖和左視圖可得此幾何體上面為臺(tái),下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點(diǎn):由三視圖判斷幾何體.視頻6、B【解題分析】

根據(jù)倒數(shù)的定義解答即可.【題目詳解】A、只有0沒有倒數(shù),該項(xiàng)錯(cuò)誤;B、﹣1的倒數(shù)是﹣1,該項(xiàng)正確;C、0沒有倒數(shù),該項(xiàng)錯(cuò)誤;D、小于1的正分?jǐn)?shù)的倒數(shù)大于1,1的倒數(shù)等于1,該項(xiàng)錯(cuò)誤.故選B.【題目點(diǎn)撥】本題主要考查倒數(shù)的定義:兩個(gè)實(shí)數(shù)的乘積是1,則這兩個(gè)數(shù)互為倒數(shù),熟練掌握這個(gè)知識(shí)點(diǎn)是解答本題的關(guān)鍵.7、D【解題分析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點(diǎn)睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關(guān)鍵.8、B【解題分析】試題分析:通過理解題意可知本題的等量關(guān)系,即每件作服裝仍可獲利=按成本價(jià)提高40%后標(biāo)價(jià),又以8折賣出,根據(jù)這兩個(gè)等量關(guān)系,可列出方程,再求解.解:設(shè)這種服裝每件的成本是x元,根據(jù)題意列方程得:x+15=(x+40%x)×80%解這個(gè)方程得:x=125則這種服裝每件的成本是125元.故選B.考點(diǎn):一元一次方程的應(yīng)用.9、B【解題分析】

先找出滑雪項(xiàng)目圖案的張數(shù),結(jié)合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【題目詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項(xiàng)目圖案的有高山滑雪和單板滑雪2張,∴從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是.故選B.【題目點(diǎn)撥】本題考查了簡(jiǎn)單事件的概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.10、D【解題分析】

根據(jù)勾股定理求出四邊形第四條邊的長(zhǎng)度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【題目詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項(xiàng)中,四條邊之比為1:3:5:5,且對(duì)應(yīng)角相等,故選D.【題目點(diǎn)撥】本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對(duì)應(yīng)邊的比相等是解題的關(guān)鍵.11、B【解題分析】

連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長(zhǎng)公式求解.【題目詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長(zhǎng)為:=4π.故選B.【題目點(diǎn)撥】本題考查了弧長(zhǎng)的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長(zhǎng)公式.12、B【解題分析】

根據(jù)左視圖的定義,從左側(cè)會(huì)發(fā)現(xiàn)兩個(gè)正方形摞在一起.【題目詳解】從左邊看上下各一個(gè)小正方形,如圖故選B.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、13【解題分析】試題解析:因?yàn)檎叫蜛ECF的面積為50cm2,所以因?yàn)榱庑蜛BCD的面積為120cm2,所以所以菱形的邊長(zhǎng)故答案為13.14、2或1【解題分析】

點(diǎn)P可能在圓內(nèi).也可能在圓外,因而分兩種情況進(jìn)行討論.【題目詳解】解:當(dāng)這點(diǎn)在圓外時(shí),則這個(gè)圓的半徑是(6-2)÷2=2;當(dāng)點(diǎn)在圓內(nèi)時(shí),則這個(gè)圓的半徑是(6+2)÷2=1.故答案為2或1.【題目點(diǎn)撥】此題主要考查點(diǎn)與圓的位置關(guān)系,解題的關(guān)鍵是注意此題應(yīng)分為兩種情況來解決.15、(-)cm2【解題分析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.16、A3()【解題分析】

設(shè)直線y=與x軸的交點(diǎn)為G,過點(diǎn)A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據(jù)等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標(biāo).【題目詳解】設(shè)直線y=與x軸的交點(diǎn)為G,

令y=0可解得x=-4,

∴G點(diǎn)坐標(biāo)為(-4,0),

∴OG=4,

如圖1,過點(diǎn)A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,

∵△A1B1O為等腰直角三角形,

∴A1D=OD,

又∵點(diǎn)A1在直線y=x+上,

∴=,即=,解得A1D=1=()0,

∴A1(1,1),OB1=2,

同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,

∴A2(,),OB2=5,

同理可求得A3F==()2,則OF=5+=,

∴A3(,);故答案為(,)【題目點(diǎn)撥】本題主要考查等腰三角形的性質(zhì)和直線上點(diǎn)的坐標(biāo)特點(diǎn),根據(jù)題意找到點(diǎn)的坐標(biāo)的變化規(guī)律是解題的關(guān)鍵,注意觀察數(shù)據(jù)的變化.17、①②③④【解題分析】①如圖1,作AU⊥NQ于U,交BD于H,連接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四點(diǎn)共圓,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴點(diǎn)U在NQ上,有BN+DQ=QU+UN=NQ;④如圖2,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點(diǎn)M是對(duì)角線BD上的點(diǎn),∴四邊形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案為:①②③④點(diǎn)睛:本題考查了正方形的性質(zhì),四點(diǎn)共圓的判定,圓周角定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì);熟練掌握正方形的性質(zhì),正確作出輔助線并運(yùn)用有關(guān)知識(shí)理清圖形中西安段間的關(guān)系,證明三角形全等是解決問題的關(guān)鍵.18、12連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【解題分析】

(1)利用勾股定理求出AB,從而得到△ABC的周長(zhǎng);(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AP,CQ即為所求.【題目詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長(zhǎng)=5+4+3=12.(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【題目點(diǎn)撥】本題涉及的知識(shí)點(diǎn)有:勾股定理,三角形中位線定理,軸對(duì)稱之線路最短問題.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解題分析】

(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因?yàn)閘=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因?yàn)镺M=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時(shí),OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【題目詳解】解:(1)如圖1,作一邊上的中線可分割成2個(gè)全等三角形,如圖2,連接外心和各頂點(diǎn)的線段可分割成3個(gè)全等三角形,如圖3,連接各邊的中點(diǎn)可分割成4個(gè)全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時(shí),OM定值最小,此時(shí)定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【題目點(diǎn)撥】本題主要考查多邊形的綜合題,主要涉及的知識(shí)點(diǎn):全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運(yùn)用這些知識(shí)點(diǎn)是解此類綜合題的關(guān)鍵。20、原式=.∵m是方程的根.∴,即,∴原式=.【解題分析】試題分析:先通分計(jì)算括號(hào)里的,再計(jì)算括號(hào)外的,化為最簡(jiǎn),由于m是方程的根,那么,可得的值,再把的值整體代入化簡(jiǎn)后的式子,計(jì)算即可.試題解析:原式=.∵m是方程的根.∴,即,∴原式=.考點(diǎn):分式的化簡(jiǎn)求值;一元二次方程的解.21、該工程隊(duì)原計(jì)劃每周修建5米.【解題分析】

找出等量關(guān)系是工作時(shí)間=工作總量÷工作效率,可根據(jù)實(shí)際施工用的時(shí)間+1周=原計(jì)劃用的時(shí)間,來列方程求解.【題目詳解】設(shè)該工程隊(duì)原計(jì)劃每周修建x米.由題意得:+1.整理得:x2+x﹣32=2.解得:x1=5,x2=﹣6(不合題意舍去).經(jīng)檢驗(yàn):x=5是原方程的解.答:該工程隊(duì)原計(jì)劃每周修建5米.【題目點(diǎn)撥】本題考查了分式方程的應(yīng)用,找到合適的等量關(guān)系是解決問題的關(guān)鍵.本題用到的等量關(guān)系為:工作時(shí)間=工作總量÷工作效率,可根據(jù)題意列出方程,判斷所求的解是否符合題意,舍去不合題意的解.22、(1)(20+2x),(40﹣x);(2)每件童裝降價(jià)20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解題分析】

(1)、根據(jù)銷售量=原銷售量+因價(jià)格下降而增加的數(shù)量;每件利潤(rùn)=原售價(jià)-進(jìn)價(jià)-降價(jià),列式即可;(2)、根據(jù)總利潤(rùn)=單件利潤(rùn)×數(shù)量,列出方程即可;(3)、根據(jù)(2)中的相關(guān)關(guān)系方程,判斷方程是否有實(shí)數(shù)根即可.【題目詳解】(1)、設(shè)每件童裝降價(jià)x元時(shí),每天可銷售20+2x件,每件盈利40-x元,

故答案為(20+2x),(40-x);(2)、根據(jù)題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價(jià)10元或20元時(shí),平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【題目點(diǎn)撥】本題主要考查的是一元二次方程的實(shí)際應(yīng)用問題,屬于中等難度題型.解決這個(gè)問題的關(guān)鍵就是要根據(jù)題意列出方程.23、(1)2、45、20;(2)72;(3)【解題分析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總?cè)藬?shù)可得b、c的值;(2)用360°乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.詳解:(1)本次調(diào)查的總?cè)藬?shù)為12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為360°×20%=72°,(3)畫樹狀圖,如圖所示:共有12個(gè)可能的結(jié)果,選中的兩名同學(xué)恰好是甲、乙的結(jié)果有2個(gè),故P(選中的兩名同學(xué)恰好是甲、乙)=.點(diǎn)睛:此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計(jì)圖、條形統(tǒng)計(jì)圖的應(yīng)用,要熟練掌握.24、(1)y=;(1)(﹣1,0)或(1,0)【解題分析】

(1)把A的坐標(biāo)代入反比例函數(shù)的表達(dá)式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出線段OA和OB,求出△AOB的面積,根據(jù)已知S△AOPS△AOB,求出OP長(zhǎng),即可求出答案.【題目詳解】(1)把A(,1)代入反比例函數(shù)y得:k=1,所以反比例函數(shù)的表達(dá)式為y;(1)∵A(,1),OA⊥AB,AB⊥x軸于C,∴OC,AC=1,OA1.∵tanA,∴∠A=60°.∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA?OB1×1.∵S△AOPS△AOB,∴OP×AC.∵AC=1,∴OP=1,∴點(diǎn)P的坐標(biāo)為(﹣1,0)或(1,0).【題目點(diǎn)撥】本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,三角形的面積,解直角三角形等知識(shí)點(diǎn),求出反比例函數(shù)的解析式和求出△AOB的面積是解答此題的關(guān)鍵.25、(1)m=20,n=8;55;(2)答案見解析.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論