山東省煙臺市萊山區(qū)2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
山東省煙臺市萊山區(qū)2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
山東省煙臺市萊山區(qū)2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
山東省煙臺市萊山區(qū)2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
山東省煙臺市萊山區(qū)2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省煙臺市萊山區(qū)2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5702.若關于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a(chǎn)<3B.a(chǎn)>3C.a(chǎn)<﹣3D.a(chǎn)>﹣33.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.84.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁5.如圖,點A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點A表示的數(shù)是A. B. C. D.36.如圖,折疊矩形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.247.在如圖的計算程序中,y與x之間的函數(shù)關系所對應的圖象大致是()A. B. C. D.8.如圖,在⊙O中,點P是弦AB的中點,CD是過點P的直徑,則下列結論:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正確的個數(shù)是()A.4 B.1 C.2 D.39.已知某校女子田徑隊23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學的年齡登記錯誤,將14歲寫成15歲,經(jīng)重新計算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結論中正確的是()A.a(chǎn)<13,b=13B.a(chǎn)<13,b<13C.a(chǎn)>13,b<13D.a(chǎn)>13,b=1310.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為,則a的值是_____.12.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構成一個軸對稱圖形,現(xiàn)在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.13.用換元法解方程,設y=,那么原方程化為關于y的整式方程是_____.14.二次根式中字母x的取值范圍是_____.15.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小邊的長是2cm,則它的最大邊的長是_____cm.16.已知拋物線y=x2上一點A,以A為頂點作拋物線C:y=x2+bx+c,點B(2,yB)為拋物線C上一點,當點A在拋物線y=x2上任意移動時,則yB的取值范圍是_________.三、解答題(共8題,共72分)17.(8分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關于x的函數(shù)關系式;(3)連結OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).18.(8分)已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,(1)求一次函數(shù)的解析式.(2)若AC是△PCB的中線,求反比例函數(shù)的關系式.19.(8分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數(shù)關系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.20.(8分)小雁塔位于唐長安城安仁坊(今陜西省西安市南郊)薦福寺內,又稱“薦福寺塔”,建于唐景龍年間,與大雁塔同為唐長安城保留至今的重要標志.小明在學習了銳角三角函數(shù)后,想利用所學知識測量“小雁塔”的高度,小明在一棟高9.982米的建筑物底部D處測得塔頂端A的仰角為45°,接著在建筑物頂端C處測得塔頂端A的仰角為37.5°.已知AB⊥BD,CD⊥BD,請你根據(jù)題中提供的相關信息,求出“小雁塔”的高AB的長度(結果精確到1米)(參考數(shù)據(jù):sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)21.(8分)求拋物線y=x2+x﹣2與x軸的交點坐標.22.(10分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.23.(12分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作,設該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關系:停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關系式;根據(jù)工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?24.如圖,在中,,,點D是BC上任意一點,將線段AD繞點A逆時針方向旋轉,得到線段AE,連結EC.依題意補全圖形;求的度數(shù);若,,將射線DA繞點D順時針旋轉交EC的延長線于點F,請寫出求AF長的思路.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.2、B【解題分析】試題分析:當x=0時,y=-5;當x=1時,y=a-1,函數(shù)與x軸在0和1之間有一個交點,則a-1>0,解得:a>1.考點:一元二次方程與函數(shù)3、B【解題分析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【題目詳解】解:由題意得,當點P為劣弧AB的中點時,PQ最小,

連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【題目點撥】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關鍵.4、D【解題分析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是丁.故選D.5、B【解題分析】

如果點A,B表示的數(shù)的絕對值相等,那么AB的中點即為坐標原點.【題目詳解】解:如圖,AB的中點即數(shù)軸的原點O.

根據(jù)數(shù)軸可以得到點A表示的數(shù)是.

故選:B.【題目點撥】此題考查了數(shù)軸有關內容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結合的優(yōu)點確定數(shù)軸的原點是解決本題的關鍵.6、A【解題分析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.7、A【解題分析】函數(shù)→一次函數(shù)的圖像及性質8、D【解題分析】

根據(jù)垂徑定理,圓周角的性質定理即可作出判斷.【題目詳解】∵P是弦AB的中點,CD是過點P的直徑.∴AB⊥CD,弧AD=弧BD,故①正確,③正確;∠AOB=2∠AOD=4∠ACD,故②正確.P是OD上的任意一點,因而④不一定正確.故正確的是:①②③.故選:D.【題目點撥】本題主要考查了垂徑定理,圓周角定理,正確理解定理是關鍵.平分弦(不是直徑)的直徑垂直與這條弦,并且平分這條弦所對的兩段??;同圓或等圓中,圓周角等于它所對的弧上的圓心角的一半.9、A【解題分析】試題解析:∵原來的平均數(shù)是13歲,∴13×23=299(歲),∴正確的平均數(shù)a=299-12∵原來的中位數(shù)13歲,將14歲寫成15歲,最中間的數(shù)還是13歲,∴b=13;故選A.考點:1.平均數(shù);2.中位數(shù).10、A【解題分析】

根據(jù)應用題的題目條件建立方程即可.【題目詳解】解:由題可得:即:故答案是:A.【題目點撥】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2+【解題分析】

試題分析:過P點作PE⊥AB于E,過P點作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據(jù)勾股定理得:PE=1,∵點A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【題目點撥】本題主要考查的就是垂徑定理的應用以及直角三角形勾股定理的應用,屬于中等難度的題型.解決這個問題的關鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個條件的應用也是很重要的.12、【解題分析】如圖,有5種不同取法;故概率為.13、6y2-5y+2=0【解題分析】

根據(jù)y=,將方程變形即可.【題目詳解】根據(jù)題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【題目點撥】此題考查了換元法解分式方程,利用了整體的思想,將方程進行適當?shù)淖冃问墙獗绢}的關鍵.14、x≤1【解題分析】

二次根式有意義的條件就是被開方數(shù)是非負數(shù),即可求解.【題目詳解】根據(jù)題意得:1﹣x≥0,解得x≤1.故答案為:x≤1【題目點撥】主要考查了二次根式的意義和性質.性質:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.15、1.【解題分析】

根據(jù)在△ABC中,∠A:∠B:∠C=1:2:3,三角形內角和等于180°可得∠A,∠B,∠C的度數(shù),它的最小邊的長是2cm,從而可以求得最大邊的長.【題目詳解】∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180∴∠A=30∵最小邊的長是2cm,∴a=2.∴c=2a=1cm.故答案為:1.【題目點撥】考查含30度角的直角三角形的性質,掌握30度角所對的直角邊等于斜邊的一半是解題的關鍵.16、ya≥1【解題分析】

設點A的坐標為(m,n),由題意可知n=m1,從而可知拋物線C為y=(x-m)1+n,化簡為y=x1-1mx+1m1,將x=1代入y=x1-1mx+1m1,利用二次函數(shù)的性質即可求出答案.【題目詳解】設點A的坐標為(m,n),m為全體實數(shù),

由于點A在拋物線y=x1上,

∴n=m1,

由于以A為頂點的拋物線C為y=x1+bx+c,

∴拋物線C為y=(x-m)1+n

化簡為:y=x1-1mx+m1+n=x1-1mx+1m1,

∴令x=1,

∴ya=4-4m+1m1=1(m-1)1+1≥1,

∴ya≥1,

故答案為ya≥1【題目點撥】本題考查了二次函數(shù)的性質,解題的關鍵是根據(jù)題意求出ya=4-4m+1m1=1(m-1)1+1.三、解答題(共8題,共72分)17、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解題分析】

(1)根據(jù)線段的垂直平分線的性質以及垂徑定理證明AG=DG=DH=AH即可;

(2)只要證明△AEF∽△ACB,可得解決問題;

(3)①分三種情形分別求解即可解決問題;

②只要證明△CFG∽△HFA,可得=,求出相應的線段即可解決問題;【題目詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當點D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負根已經(jīng)舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當點C與點F重合時,設AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負根已經(jīng)舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.【題目點撥】本題考查圓綜合題、相似三角形的判定和性質、垂徑定理、線段的垂直平分線的性質、菱形的判定和性質、勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會用分類討論的思想思考問題.18、(2)y=2x+2;(2)y=.【解題分析】

(2)由cos∠ABO=,可得到tan∠ABO=2,從而可得到k=2;(2)先求得A、B的坐標,然后依據(jù)中點坐標公式可求得點P的坐標,將點P的坐標代入反比例函數(shù)的解析式可求得m的值.【題目詳解】(2)∵cos∠ABO=,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2∴一次函數(shù)的解析式為y=2x+2.(2)當x=0時,y=2,∴A(0,2).當y=0時,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中線,∴P(2,4).∴m=xy=2×4=4,∴反例函數(shù)的解析式為y=.【題目點撥】本題主要考查的是反比例函數(shù)與一次函數(shù)的交點、銳角三角函數(shù)的定義、中點坐標公式的應用,確定一次函數(shù)系數(shù)k=tan∠ABO是解題的關鍵.19、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解題分析】

(1)由矩形性質知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【題目詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當點P在線段AB上運動時,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當點P在射線AB上運動時,即t>4,此時,EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點F為圓心的⊙F恰好與直線AB、BC相切時,PF=FG,分以下三種情況:①當t=0或t=4時,顯然符合條件的⊙F不存在;②當0<t<4時,如解圖1,作FG⊥BC于點G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時⊙F的半徑PF=;③當t>4時,如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時⊙F的半徑PF=12.【題目點撥】本題主要考查了矩形的性質,勾股定理,動點的函數(shù)為題,切線的性質,相似三角形的判定與性質及分類討論的數(shù)學思想.解題的關鍵是熟練掌握切線的性質、矩形的性質及相似三角形的判定與性質.20、43米【解題分析】

作CE⊥AB于E,則四邊形BDCE是矩形,BE=CD=9.982米,設AB=x.根據(jù)tan∠ACE=,列出方程即可解決問題.【題目詳解】解:如圖,作CE⊥AB于E.則四邊形BDCE是矩形,BE=CD=9.982米,設AB=x.在Rt△ABD中,∵∠ADB=45°,∴AB=BD=x,在Rt△AEC中,tan∠ACE==tan37.5°≈0.77,∴=0.77,解得x≈43,答:“小雁塔”的高AB的長度約為43米.【題目點撥】本題考查解直角三角形的應用-仰角俯角問題,銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會用構建方程的思想思考問題.21、(1,0)、(﹣2,0)【解題分析】試題分析:拋物線與x軸交點的縱坐標等于零,由此解答即可.試題解析:解:令,即.解得:,.∴該拋物線與軸的交點坐標為(-2,0),(1,0).22、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解題分析】

(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質即可求出結論.【題目詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當點D在y軸左側時,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點D(m,n)是線段AB的“等長點”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當點D在y軸右側時,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點D(m,n)是線段AB的“等長點”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,當PF與⊙B相切時交y軸于F,∴PA切⊙B于A,∴點F就是直線y=kx+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論