新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題05 解析幾何(原卷版)_第1頁
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題05 解析幾何(原卷版)_第2頁
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題05 解析幾何(原卷版)_第3頁
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題05 解析幾何(原卷版)_第4頁
新高考數(shù)學(xué)三輪沖刺大題突破練習(xí)專題05 解析幾何(原卷版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題05解析幾何解析幾何一般作為解答題21題或者是22題形式出現(xiàn)。一般作為壓軸題或者是次壓軸題出現(xiàn),難度較大。1與原有關(guān)問題(蒙日圓,阿氏圓等)2面積問題3齊次化解決直線定點問題4一般的定值問題5非對稱問題6探究性問題7切線問題與阿基米德三角形問題8極點極限與調(diào)和點列,蝴蝶模型問題9不聯(lián)立問題10與其他知識點交叉問題蒙日圓定理的內(nèi)容:橢圓的兩條切線互相垂直,則兩切線的交點位于一個與橢圓同心的圓上,該圓稱為蒙日圓,其半徑等于橢圓長半軸和短半軸平方和的算術(shù)平方根,具體結(jié)論及證明如下:結(jié)論一:曲線SKIPIF1<0的兩條互相垂直的切線的交點SKIPIF1<0的軌跡是圓:SKIPIF1<0.結(jié)論二:雙曲線SKIPIF1<0的兩條互相垂直的切線的交點的軌跡是圓SKIPIF1<0SKIPIF1<0.結(jié)論三:拋物線SKIPIF1<0的兩條互相垂直的切線的交點在該拋物線的準(zhǔn)線上.題型一:與原有關(guān)問題(蒙日圓,協(xié)同圓等)例題1已知橢圓SKIPIF1<00).稱圓心在原點,半徑為SKIPIF1<0的圓為橢圓SKIPIF1<0的“準(zhǔn)圓”.若橢圓SKIPIF1<0的一個焦點為SKIPIF1<0SKIPIF1<0,其短軸上的一個端點到SKIPIF1<0的距離為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程及其“準(zhǔn)圓”方程.(2)點SKIPIF1<0是橢圓SKIPIF1<0的“準(zhǔn)圓”上的動點,過點SKIPIF1<0作橢圓的切線SKIPIF1<0交“準(zhǔn)圓”于點SKIPIF1<0.①當(dāng)點SKIPIF1<0為“準(zhǔn)圓”與SKIPIF1<0軸正半軸的交點時,求直線SKIPIF1<0的方程并證明SKIPIF1<0.②求證:線段SKIPIF1<0的長為定值.【解析】(1)依題意可得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.SKIPIF1<0.(2)證明:①由(1)題可得SKIPIF1<0,設(shè)切線方程為:SKIPIF1<0.聯(lián)立SKIPIF1<0,消去SKIPIF1<0可得SKIPIF1<0,整理可得SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.∴設(shè)直線PM:SKIPIF1<0,直線SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0,即SKIPIF1<0.②設(shè)SKIPIF1<0,直線SKIPIF1<0SKIPIF1<0.則SKIPIF1<0,消去SKIPIF1<0可得SKIPIF1<0.即SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0.整理得SKIPIF1<0.同理,設(shè)切線SKIPIF1<0的斜率為SKIPIF1<0,則有SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0在“準(zhǔn)圓”上.∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0為“準(zhǔn)圓”的直徑.∴SKIPIF1<0為定值,SKIPIF1<0.1.公元前3世紀(jì),古希臘數(shù)學(xué)家阿波羅尼斯SKIPIF1<0在《平面軌跡》一書中,研究了眾多的平面軌跡問題,其中有如下著名結(jié)果:平面內(nèi)到兩個定點SKIPIF1<0,SKIPIF1<0距離之比為SKIPIF1<0且SKIPIF1<0的點SKIPIF1<0的軌跡為圓,此圓稱為阿波羅尼斯圓.(1)已知兩定點SKIPIF1<0,SKIPIF1<0,若動點SKIPIF1<0滿足SKIPIF1<0,求點SKIPIF1<0的軌跡方程;(2)已知SKIPIF1<0,SKIPIF1<0是圓SKIPIF1<0上任意一點,在平面上是否存在點SKIPIF1<0,使得SKIPIF1<0恒成立?若存在,求出點SKIPIF1<0坐標(biāo);若不存在,說明理由;(3)已知SKIPIF1<0是圓SKIPIF1<0上任意一點,在平面內(nèi)求出兩個定點SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0恒成立.只需寫出兩個定點SKIPIF1<0,SKIPIF1<0的坐標(biāo),無需證明.題型二:面積問題1.已知M是平面直角坐標(biāo)系內(nèi)的一個動點,直線SKIPIF1<0與直線SKIPIF1<0垂直,A為垂足且位于第一象限,直線SKIPIF1<0與直線SKIPIF1<0垂直,B為垂足且位于第四象限,四邊形SKIPIF1<0(O為原點)的面積為8,動點M的軌跡為C.(1)求軌跡C的方程;(2)已知SKIPIF1<0是軌跡C上一點,直線l交軌跡C于P,Q兩點,直線SKIPIF1<0,SKIPIF1<0的斜率之和為1,SKIPIF1<0,求SKIPIF1<0的面積.【答案】(1)SKIPIF1<0(SKIPIF1<0)(2)SKIPIF1<0【詳解】(1)設(shè)動點SKIPIF1<0,由題意知M只能在直線SKIPIF1<0與直線SKIPIF1<0所夾的范圍內(nèi)活動.SKIPIF1<0,SKIPIF1<0,動點SKIPIF1<0在SKIPIF1<0右側(cè),有SKIPIF1<0,同理有SKIPIF1<0,∵四邊形SKIPIF1<0的面積為8,∴SKIPIF1<0,即SKIPIF1<0,所以所求軌跡C方程為SKIPIF1<0(SKIPIF1<0).(2)如圖,設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,斜率為k,直線SKIPIF1<0傾斜角為SKIPIF1<0,則SKIPIF1<0斜率為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在曲線C上,過點T直線與曲線C有兩個交點,則SKIPIF1<0或SKIPIF1<0,同時SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.

SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).SKIPIF1<0時,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消y得:SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0.直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消y得:SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,點Q到直線SKIPIF1<0的距離SKIPIF1<0

,SKIPIF1<0.方法二:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.1已知橢圓SKIPIF1<0離心率為SKIPIF1<0,經(jīng)過SKIPIF1<0的左焦點SKIPIF1<0斜率為1的直線與SKIPIF1<0軸正半軸相交于點SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)設(shè)M,N是SKIPIF1<0上異于SKIPIF1<0的兩點,若SKIPIF1<0,求SKIPIF1<0面積的最大值.題型三:齊次化解決定值定點問題1已知橢圓C:SKIPIF1<0(a>b>0),四點P1(1,1),P2(0,1),P3(–1,SKIPIF1<0),P4(1,SKIPIF1<0)中恰有三點在橢圓C上.(Ⅰ)求C的方程;(Ⅱ)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.【答案】(1)SKIPIF1<0.(2)證明見解析.解題方法一:試題解析:(1)由于SKIPIF1<0,SKIPIF1<0兩點關(guān)于y軸對稱,故由題設(shè)知C經(jīng)過SKIPIF1<0,SKIPIF1<0兩點.又由SKIPIF1<0知,C不經(jīng)過點P1,所以點P2在C上.因此SKIPIF1<0,解得SKIPIF1<0.故C的方程為SKIPIF1<0.(2)設(shè)直線P2A與直線P2B的斜率分別為k1,k2,如果l與x軸垂直,設(shè)l:x=t,由題設(shè)知SKIPIF1<0,且SKIPIF1<0,可得A,B的坐標(biāo)分別為(t,SKIPIF1<0),(t,SKIPIF1<0).則SKIPIF1<0,得SKIPIF1<0,不符合題設(shè).從而可設(shè)l:SKIPIF1<0(SKIPIF1<0).將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0由題設(shè)可知SKIPIF1<0.設(shè)A(x1,y1),B(x2,y2),則x1+x2=SKIPIF1<0,x1x2=SKIPIF1<0.而SKIPIF1<0SKIPIF1<0SKIPIF1<0.由題設(shè)SKIPIF1<0,故SKIPIF1<0.即SKIPIF1<0.解得SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0,欲使l:SKIPIF1<0,即SKIPIF1<0,所以l過定點(2,SKIPIF1<0)解題方法二:齊次化處理:1.已知橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,且過點SKIPIF1<0.(1)求SKIPIF1<0的方程:(2)點SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為垂足.證明:存在定點SKIPIF1<0,使得SKIPIF1<0為定值.題型四:一般的定值定點問題1.已知SKIPIF1<0為雙曲線SKIPIF1<0的左?右焦點,SKIPIF1<0的一條漸近線方程為SKIPIF1<0為SKIPIF1<0上一點,且SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)設(shè)點SKIPIF1<0在坐標(biāo)軸上,直線SKIPIF1<0與SKIPIF1<0交于異于SKIPIF1<0的SKIPIF1<0兩點,SKIPIF1<0為SKIPIF1<0的中點,且SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,是否存在點SKIPIF1<0,使得SKIPIF1<0為定值?若存在,求出點SKIPIF1<0的坐標(biāo)以及SKIPIF1<0的長度;若不存在,請說明理由.【答案】(1)SKIPIF1<0(2)存在;點SKIPIF1<0,SKIPIF1<0為定值SKIPIF1<0【詳解】(1)由題意,在雙曲線SKIPIF1<0中,漸近線方程為SKIPIF1<0,由條件可知SKIPIF1<0.根據(jù)雙曲線的定義可知,SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0.(2)由題意及(1)得,在SKIPIF1<0中,SKIPIF1<0,∴點SKIPIF1<0在雙曲線SKIPIF1<0的左支上,當(dāng)點SKIPIF1<0在坐標(biāo)軸上,則點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0的斜率存在時,設(shè)SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0的中點,且SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,驗證均滿足SKIPIF1<0.當(dāng)SKIPIF1<0時,直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0過點SKIPIF1<0,不合題意,舍去;當(dāng)SKIPIF1<0時,直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0過定點SKIPIF1<0,符合題意.當(dāng)直線SKIPIF1<0的斜率不存在時,由SKIPIF1<0,可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0的方程為:SKIPIF1<0,則直線SKIPIF1<0過定點SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0是以SKIPIF1<0為斜邊的直角三角形,∴點SKIPIF1<0在以SKIPIF1<0為直徑的圓上,則當(dāng)SKIPIF1<0為該圓的圓心SKIPIF1<0時,SKIPIF1<0為該圓的半徑,即SKIPIF1<0,故存在點SKIPIF1<0,使得SKIPIF1<0為定值SKIPIF1<0.1已知雙曲線SKIPIF1<0過點SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的兩個頂點連線的斜率之和為4.(1)求SKIPIF1<0的方程;(2)過點SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(異于點SKIPIF1<0).設(shè)直線SKIPIF1<0與SKIPIF1<0軸垂直且交直線SKIPIF1<0于點SKIPIF1<0,若線段SKIPIF1<0的中點為SKIPIF1<0,證明:直線SKIPIF1<0的斜率為定值,并求該定值.類型五非對稱問題1已知橢圓SKIPIF1<0的長軸長為6,離心率為SKIPIF1<0.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓C的左、右焦點分別為SKIPIF1<0,SKIPIF1<0,左、右頂點分別為A,B,點M,N為橢圓C上位于x軸上方的兩點,且SKIPIF1<0,記直線AM,BN的斜率分別為SKIPIF1<0,且SKIPIF1<0,求直線SKIPIF1<0的方程.(1)SKIPIF1<0(2)SKIPIF1<0(1)由題意,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)如圖,由(1)知SKIPIF1<0,SKIPIF1<0方程為SKIPIF1<0SKIPIF1<0,直線SKIPIF1<0與橢圓的另一個交點為SKIPIF1<0,∵SKIPIF1<0,根據(jù)對稱性可得SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,聯(lián)立解得SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.1已知橢圓SKIPIF1<0過點SKIPIF1<0,且SKIPIF1<0.(Ⅰ)求橢圓C的方程:(Ⅱ)過點SKIPIF1<0的直線l交橢圓C于點SKIPIF1<0,直線SKIPIF1<0分別交直線SKIPIF1<0于點SKIPIF1<0.求SKIPIF1<0的值.類型六探究性問題1.已知雙曲線SKIPIF1<0的左右焦點分別為SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在直線SKIPIF1<0上且不在SKIPIF1<0軸上,直線SKIPIF1<0與雙曲線的交點分別為A,B,直線SKIPIF1<0與雙曲線的交點分別為C,D.(1)設(shè)直線SKIPIF1<0和SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值;(2)問直線l上是否存在點P,使得直線OA,OB,OC,OD的斜率SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0?若存在,求出所有滿足條件的點SKIPIF1<0的坐標(biāo);若不存在,請說明理由.解析:(1)SKIPIF1<0(2)存在,SKIPIF1<0或SKIPIF1<0(1)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;(2)假設(shè)直線l上存在點SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,同理SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,由(1)SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,由(1)SKIPIF1<0得SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0或SKIPIF1<0.1在直角坐標(biāo)平面中,SKIPIF1<0的兩個頂點的坐標(biāo)分別為SKIPIF1<0,兩動點SKIPIF1<0滿足SKIPIF1<0,向量SKIPIF1<0與SKIPIF1<0共線.(1)求SKIPIF1<0的頂點SKIPIF1<0的軌跡方程;(2)若過點SKIPIF1<0的直線與(1)的軌跡相交于SKIPIF1<0兩點,求SKIPIF1<0的取值范圍.(3)若SKIPIF1<0為SKIPIF1<0點的軌跡在第一象限內(nèi)的任意一點,則是否存在常數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.類型七切線問題與阿基米德三角形問題拋物線的弦與過弦的端點的兩條切線所圍的三角形,這個三角形又常被稱為阿基米德三角形.阿基米德三角形的得名,是因為阿基米德本人最早利用逼近的思想證明如下結(jié)論:拋物線與阿基米德三角形定理:拋物線的弦與拋物線所圍成的封閉圖形的面積,等于拋物線的弦與過弦的端點的兩條切線所圍成的三角形面積的三分之二.下面來逐一介紹阿基米德三角形的一些推論:如圖,已知SKIPIF1<0是拋物線SKIPIF1<0準(zhǔn)線上任意一點,過SKIPIF1<0作拋物線的切線SKIPIF1<0、SKIPIF1<0兩點,SKIPIF1<0中點,則:1.若過焦點,則的端點的兩條切線的交點SKIPIF1<0在其準(zhǔn)線上.2.阿基米德三角形底邊上的中線平行于坐標(biāo)軸,即SKIPIF1<0. 3.過拋物線的焦點4.SKIPIF1<05.阿基米德三角形面積的最小值為SKIPIF1<01如下圖,設(shè)拋物線方程為SKIPIF1<0,M為直線SKIPIF1<0上任意一點,過SKIPIF1<0引拋物線的切線,切點分別為SKIPIF1<0,SKIPIF1<0.(Ⅰ)設(shè)線段SKIPIF1<0的中點為SKIPIF1<0;(?。┣笞C:SKIPIF1<0平行于SKIPIF1<0軸;(ⅱ)已知當(dāng)SKIPIF1<0點的坐標(biāo)為SKIPIF1<0時,SKIPIF1<0,求此時拋物線的方程;(Ⅱ)是否存在點SKIPIF1<0,使得點SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點SKIPIF1<0在拋物線SKIPIF1<0上,其中,點SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點).若存在,求出所有適合題意的點SKIPIF1<0的坐標(biāo);若不存在,請說明理由.【答案】(Ⅰ)(ⅰ)證明見解析;(ⅱ)SKIPIF1<0或SKIPIF1<0;(Ⅱ)僅存在一點SKIPIF1<0適合題意.【分析】(Ⅰ)(ⅰ)設(shè)出SKIPIF1<0的坐標(biāo),利用導(dǎo)數(shù)求得切線SKIPIF1<0的方程,結(jié)合SKIPIF1<0是線段SKIPIF1<0的中點進(jìn)行化簡,得到SKIPIF1<0兩點的橫坐標(biāo)相等,由此證得SKIPIF1<0平行于SKIPIF1<0軸.(ⅱ)利用SKIPIF1<0列方程,解方程求得SKIPIF1<0,進(jìn)而求得拋物線方程.(Ⅱ)設(shè)出SKIPIF1<0點坐標(biāo),由SKIPIF1<0點坐標(biāo)求得線段SKIPIF1<0中點的坐標(biāo),由直線SKIPIF1<0的方程和拋物線的方程,求得SKIPIF1<0點的坐標(biāo),由此進(jìn)行分類討論求得SKIPIF1<0點的坐標(biāo).【詳解】(Ⅰ)(ⅰ)證明:由題意設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因此直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0.所以SKIPIF1<0,①SKIPIF1<0.②由①、②得SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0,也即SKIPIF1<0.所以SKIPIF1<0平行于SKIPIF1<0軸.(ⅱ)解:由(?。┲?,當(dāng)SKIPIF1<0時,將其代入①、②并整理得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩根,因此SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.由弦長公式的SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,因此所求拋物線方程為SKIPIF1<0或SKIPIF1<0.(Ⅱ)解:設(shè)SKIPIF1<0,由題意得SKIPIF1<0,則SKIPIF1<0的中點坐標(biāo)為SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由點SKIPIF1<0在直線SKIPIF1<0上,并注意到點SKIPIF1<0也在直線SKIPIF1<0上,代入得SKIPIF1<0.若SKIPIF1<0在拋物線上,則SKIPIF1<0,因此SKIPIF1<0或SKIPIF1<0.即SKIPIF1<0或SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,則SKIPIF1<0,此時,點SKIPIF1<0適合題意.(2)當(dāng)SKIPIF1<0,對于SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,矛盾.對于SKIPIF1<0,因為SKIPIF1<0,此時直線SKIPIF1<0平行于SKIPIF1<0軸,又SKIPIF1<0,所以直線SKIPIF1<0與直線SKIPIF1<0不垂直,與題設(shè)矛盾,所以SKIPIF1<0時,不存在符合題意得SKIPIF1<0點.綜上所述,僅存在一點SKIPIF1<0適合題目如圖,設(shè)拋物線方程為SKIPIF1<0,SKIPIF1<0為直線SKIPIF1<0上任意一點,過SKIPIF1<0引拋物線的切線,切點分別為SKIPIF1<0.(Ⅰ)求證:SKIPIF1<0三點的橫坐標(biāo)成等差數(shù)列;(Ⅱ)已知當(dāng)SKIPIF1<0點的坐標(biāo)為SKIPIF1<0時,SKIPIF1<0.求此時拋物線的方程;yxBAOMSKIPIF1<0(Ⅲ)是否存在點SKIPIF1<0,使得點SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點SKIPIF1<0在拋物線SKIPIF1<0上,其中,點SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點).若存在,求出所有適合題意的點SKIPIF1<0的坐標(biāo);若不存在,請說明理由.yxBAOMSKIPIF1<0類型八極點極限調(diào)和點列蝴蝶模型1.極點和極線的幾何定義如圖,SKIPIF1<0為不在圓錐曲線SKIPIF1<0上的點,過點SKIPIF1<0引兩條割線依次交圓錐曲線于四點SKIPIF1<0,連接SKIPIF1<0交于SKIPIF1<0,連接SKIPIF1<0交于SKIPIF1<0,我們稱點SKIPIF1<0為直線SKIPIF1<0關(guān)于圓錐曲線SKIPIF1<0的極點,稱直線SKIPIF1<0為點SKIPIF1<0關(guān)于圓錐曲線SKIPIF1<0的極線.直線SKIPIF1<0交圓錐曲線SKIPIF1<0于SKIPIF1<0兩點,則SKIPIF1<0為圓錐曲線SKIPIF1<0的兩條切線.若SKIPIF1<0在圓錐曲線SKIPIF1<0上,則過點SKIPIF1<0的切線即為極線.(1)自極三角形:極點SKIPIF1<0一一極線SKIPIF1<0;極點SKIPIF1<0一一極線SKIPIF1<0極點SKIPIF1<0一一極線SKIPIF1<0;即SKIPIF1<0中,三個頂點和對邊分別為一對極點和極線,稱SKIPIF1<0為“自極三角形”.(2)極點和極線的兩種特殊情況(1)當(dāng)四邊形變成三角形時:曲線上的點SKIPIF1<0對應(yīng)的極線,就是切線SKIPIF1<0;

(2)當(dāng)四邊有一組對邊平行時,如:當(dāng)SKIPIF1<0時,SKIPIF1<0和SKIPIF1<0的交點SKIPIF1<0落在無窮遠(yuǎn)處;點SKIPIF1<0的極線SKIPIF1<0和點SKIPIF1<0的極線SKIPIF1<0滿足:SKIPIF1<02.極點和極線的代數(shù)定義對于定點SKIPIF1<0與非退化二次曲線SKIPIF1<0過點SKIPIF1<0作動直線與曲線SKIPIF1<0交于點SKIPIF1<0與點SKIPIF1<0,那么點SKIPIF1<0關(guān)于線段SKIPIF1<0的調(diào)和點SKIPIF1<0的軌跡是什么?可以證明:點SKIPIF1<0在一條定直線SKIPIF1<0上,如下圖.我們稱點SKIPIF1<0為直線SKIPIF1<0關(guān)于曲線SKIPIF1<0的極點;相應(yīng)地,稱直線SKIPIF1<0為點SKIPIF1<0關(guān)于曲線SKIPIF1<0的極線.一般地,對于圓錐曲線SKIPIF1<0設(shè)極點SKIPIF1<0,則對應(yīng)的極線為 SKIPIF1<0【注】替換規(guī)則為:SKIPIF1<0(1)橢圓SKIPIF1<0的三類極點極線(1)若極點SKIPIF1<0在橢圓外,過點SKIPIF1<0作橢圓的兩條?線,切點為SKIPIF1<0,則極線為切點弦所在直線 SKIPIF1<0(2)若極點SKIPIF1<0在橢圓上,過點SKIPIF1<0作橢圓的切線SKIPIF1<0,則極線為切線SKIPIF1<0;(3)若極點SKIPIF1<0在橢圓內(nèi),過點SKIPIF1<0作橢圓的弦SKIPIF1<0,分別過SKIPIF1<0作橢圓切線,則切線交點軌跡為極線SKIPIF1<0由此可得橢圓極線的幾何作法:(2)對于雙曲線SKIPIF1<0,極點SKIPIF1<0對應(yīng)的極線為SKIPIF1<0(3)對于拋物線SKIPIF1<0,極點SKIPIF1<0對應(yīng)的極線為SKIPIF1<0.3.極點和極線的性質(zhì)(1)引理:已知橢圓方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,點SKIPIF1<0不與原點重合.過點SKIPIF1<0作直線交橢圓于SKIPIF1<0兩點,SKIPIF1<0點在直線SKIPIF1<0上,則“點SKIPIF1<0在直線SKIPIF1<0上"的充要條件是SKIPIF1<0調(diào)和分割SKIPIF1<0,即SKIPIF1<0.1設(shè)橢圓C:x2a2(1)求敉圓C的方程;(2)當(dāng)過點P(4,1)的動直線l于橢圓C相交于兩不同點A,B時,在線段AB上取點Q,滿足|【答案】(1)x2【解析】(1)由題意得:SKIPIF1<0,解得SKIPIF1<0,所求橢圓方程為x24+y22=1.(2)解法1:定比點差法設(shè)點Q、A由題設(shè)知|AP|,|PB|,|AQ|,|又A,P于是4=x從而:4x=x又點A、B在橢圓x1x2(1)+(2)×2,并結(jié)合(3)(4)得4x即點Q(x,解法2:構(gòu)造同構(gòu)式設(shè)點Q(由題設(shè)知|AP|,|PB又A,P于是x1=4?由于Ax1,y1,B整理得:x2x2(4)-(3)得:8(2x即點Q(x,解法3:極點極線由|AP|?|QB說明點P,Q關(guān)于桞圓調(diào)和共軛,點Q在點此極線方程為4?x4+故點Q總在直線2x如圖,過直線l:5x?7y?70=0上的點P作橢圓x225+y(1)當(dāng)點P在直線l上運動時,證明:直線MN恒過定點Q;(2)當(dāng)MN//l時,定點Q平分線段蝴蝶定理(ButterflyTheorem),是古代歐氏平面幾何中最精彩的結(jié)果之一.這個命題最早出現(xiàn)在1815年,由W.G.霍納提出證明.【蝴蝶定理】M是⊙O中弦AB的中點,過點M的兩條弦CD,EF,連接DE,CF交AB于P問題中的圖形酷似圓中翩翩起舞的蝴蝶,因此而被冠之“蝴蝶定理".蝴蝶定理還可以推廣到橢圓,甚至雙曲線與拋物線中.例題.如圖,O為坐標(biāo)原點,橢圓C:x2a2+y(1)求橢圓C的方程;(2)過點P(0,1)作直線l交橢圓C于異于M,N的A,B兩點,直線AM,類型九不聯(lián)立問題1已知點SKIPIF1<0在雙曲線SKIPIF1<0上,直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點,直線SKIPIF1<0,SKIPIF1<0的斜率之和為0.(1)求SKIPIF1<0的斜率;(2)若SKIPIF1<0,求SKIPIF1<0的面積.解析:(1)設(shè)SKIPIF1<0,由點SKIPIF1<0都在雙曲線SKIPIF1<0上,得,,所以,結(jié)合斜率公式,相減后變形,可得:,.因為直線SKIPIF1<0的斜率之和為SKIPIF1<0,即SKIPIF1<0,所以,由得.②由得.③由②-③,得,從而,即SKIPIF1<0的斜率為SKIPIF1<0.1已知橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,且過點SKIPIF1<0.(1)求SKIPIF1<0的方程:(2)點SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為垂足.證明:存在定點SKIPIF1<0,使得SKIPIF1<0為定值.類型十與其他知識點交叉問題某電廠冷卻塔的外形是由SKIPIF1<0雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)所形成的曲面.如圖所示,已知它的最小半徑為SKIPIF1<0,上口半徑為SKIPIF1<0,下口半徑為SKIPIF1<0,高為SKIPIF1<0,選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系.(1)求此雙曲線SKIPIF1<0的方程;(2)定義:以(1)中求出的雙曲線SKIPIF1<0的實軸為虛軸,以SKIPIF1<0的虛軸為實軸的雙曲線SKIPIF1<0叫做SKIPIF1<0的共軛雙曲線,求雙曲線SKIPIF1<0的方程;(3)對于(2)中的雙曲線SKIPIF1<0?SKIPIF1<0的離心率分別為SKIPIF1<0?SKIPIF1<0,寫出SKIPIF1<0與SKIPIF1<0滿足的一個關(guān)系式,并證明.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(1)以冷卻塔的軸截面的最窄處所在的直線為SKIPIF1<0軸,垂直平分線為SKIPIF1<0軸建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為SKIPIF1<0,由題意知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)以(1)中求出的雙曲線SKIPIF1<0的實軸為虛軸,以SKIPIF1<0的虛軸為實軸的雙曲線SKIPIF1<0為SKIPIF1<0.(3)SKIPIF1<0與SKIPIF1<0滿足的一個關(guān)系式為SKIPIF1<0,證明如下,雙曲線SKIPIF1<0的半焦距SKIPIF1<0,所以雙曲線SKIPIF1<0的離心率為SKIPIF1<0,雙曲線SKIPIF1<0的半焦距SKIPIF1<0,所以雙曲線SKIPIF1<0的離心率為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0滿足的一個關(guān)系式為SKIPIF1<0.1在平面直角坐標(biāo)系SKIPIF1<0中,對于直線SKIPIF1<0和點SKIPIF1<0、SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,則稱點SKIPIF1<0、SKIPIF1<0被直線SKIPIF1<0分隔,若曲線SKIPIF1<0與直線SKIPIF1<0沒有公共點,且曲線SKIPIF1<0上存在點SKIPIF1<0、SKIPIF1<0被直線SKIPIF1<0分隔,則稱直線SKIPIF1<0為曲線SKIPIF1<0的一條分隔線.(1)判斷點SKIPIF1<0是否被直線SKIPIF1<0分隔并證明;(2)若直線SKIPIF1<0是曲線SKIPIF1<0的分隔線,求實數(shù)SKIPIF1<0的取值范圍;(3)動點SKIPIF1<0到點SKIPIF1<0的距離與到SKIPIF1<0軸的距離之積為SKIPIF1<0,設(shè)點SKIPIF1<0的軌跡為曲線SKIPIF1<0,求證:通過原點的直線中,有且僅有一條直線是SKIPIF1<0的分隔線.1.(2022·北京海淀·??寄M預(yù)測)橢圓C:SKIPIF1<0的右頂點為SKIPIF1<0,離心率為SKIPIF1<0(1)求橢圓C的方程及短軸長;(2)已知:過定點SKIPIF1<0作直線l交橢圓C于D,E兩點,過E作AB的平行線交直線DB于點F,設(shè)EF中點為G,直線BG與橢圓的另一點交點為M,若四邊形BEMF為平行四邊形,求G點坐標(biāo).2.(2022·北京·統(tǒng)考模擬預(yù)測)如圖所示,過原點O作兩條互相垂直的線OA,OB分別交拋物線SKIPIF1<0于A,B兩點,連接AB,交y軸于點P.(1)求點P的坐標(biāo);(2)證明:存在相異于點P的定點T,使得SKIPIF1<0恒成立,請求出點T的坐標(biāo),并求出SKIPIF1<0面積的最小值.3.(2023·湖北武漢·統(tǒng)考模擬預(yù)測)過坐標(biāo)原點SKIPIF1<0作圓SKIPIF1<0的兩條切線,設(shè)切點為SKIPIF1<0,直線SKIPIF1<0恰為拋物SKIPIF1<0的準(zhǔn)線.(1)求拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)點SKIPIF1<0是圓SKIPIF1<0上的動點,拋物線SKIPIF1<0上四點SKIPIF1<0滿足:SKIPIF1<0,設(shè)SKIPIF1<0中點為SKIPIF1<0.(i)求直線SKIPIF1<0的斜率;(ii)設(shè)SKIPIF1<0面積為SKIPIF1<0,求SKIPIF1<0的最大值.4.(2022·江蘇南京·模擬預(yù)測)在平面直角坐標(biāo)系xOy中,拋物線SKIPIF1<0.SKIPIF1<0,SKIPIF1<0為C上兩點,且SKIPIF1<0,SKIPIF1<0分別在第一、四象限.直線SKIPIF1<0與x正半軸交于SKIPIF1<0,與y負(fù)半軸交于SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0橫坐標(biāo)的取值范圍;(2)記SKIPIF1<0的重心為G,直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0,證明:λ為定值.5.(2023河北·校聯(lián)考三模)已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,過SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點,斜率為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0相切于點SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0不垂直,SKIPIF1<0為SKIPIF1<0的中點.(1)若SKIPIF1<0,求SKIPIF1<0;(2)若直線SKIPIF1<0過SKIPIF1<0,求SKIPIF1<0.6.(2023·山東泰安·統(tǒng)考一模)已知橢圓SKIPIF1<0:SKIPIF1<0的左,右焦點分別為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上不同的兩點,且點SKIPIF1<0在SKIPIF1<0軸上方,SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0交于點SKIPIF1<0.已知當(dāng)SKIPIF1<0軸時,SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)求證:點SKIPIF1<0在以SKIPIF1<0,SKIPIF1<0為焦點的定橢圓上..7.(2023·河北邢臺·校聯(lián)考模擬預(yù)測)已知雙曲線SKIPIF1<0過點SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的兩個頂點連線的斜率之和為4.(1)求SKIPIF1<0的方程;(2)過點SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(異于點SKIPIF1<0).設(shè)直線SKIPIF1<0與SKIPIF1<0軸垂直且交直線SKIPIF1<0于點SKIPIF1<0,若線段SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論