版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
二維隨機(jī)變量及其分布第三章
二維隨機(jī)變量及其聯(lián)合分布邊緣分布與獨(dú)立性兩個(gè)隨機(jī)變量的函數(shù)的分布例如
E:抽樣調(diào)查15-18歲青少年的身高X與體重Y,以研究當(dāng)前該年齡段青少年的身體發(fā)育情況。
前面我們討論的是隨機(jī)實(shí)驗(yàn)中單獨(dú)的一個(gè)隨機(jī)變量,又稱為一維隨機(jī)變量;然而在許多實(shí)際問(wèn)題中,常常需要同時(shí)研究一個(gè)試驗(yàn)中的兩個(gè)甚至更多個(gè)隨機(jī)變量。
不過(guò)此時(shí)我們需要研究的不僅僅是X及Y各自的性質(zhì),更需要了解這兩個(gè)隨機(jī)變量的相互依賴和制約關(guān)系。因此,我們將二者作為一個(gè)整體來(lái)進(jìn)行研究,記為(X,Y),稱為二維隨機(jī)變(向)量。
設(shè)X、Y為定義在同一樣本空間Ω上的隨機(jī)變量,則稱向量(X,Y)為Ω上的一個(gè)二維隨機(jī)變量。定義二維隨機(jī)變量二維隨機(jī)變量(X,Y)的取值可看作平面上的點(diǎn)(x,y)A二維隨機(jī)變量的聯(lián)合分布函數(shù)若(X,Y)是隨機(jī)變量,對(duì)于任意的實(shí)數(shù)x,y.定義稱為二維隨機(jī)變量的聯(lián)合分布函數(shù)性質(zhì)(3)(x,y)x1x2y1y2P(x1
X
x2,y1
Y
y2)=F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1)聯(lián)合分布函數(shù)表示矩形域概率P(x1
X
x2,y1
Y
y2)F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1)二維離散型隨機(jī)變量
若二維隨機(jī)變量(X,Y)的所有可能取值只有限對(duì)或可列對(duì),則稱(X,Y)為二維離散型隨機(jī)變量。如何反映(X,Y)的取值規(guī)律呢?定義研究問(wèn)題聯(lián)想一維離散型隨機(jī)變量的分布律。(X,Y)的聯(lián)合概率分布(分布律)表達(dá)式形式
。。。......。。。...。。。......。。。...。。。...。。。...。。。...。。。。。。...。。。......。。。。。。......。。。...。。。。。。......。。。。。。......。。。。。。表格形式(常見(jiàn)形式)性質(zhì)
一個(gè)口袋中有三個(gè)球,依次標(biāo)有數(shù)字1,2,2,從中任取一個(gè),不放回袋中,再任取一個(gè),設(shè)每次取球時(shí),各球被取到的可能性相等.以X、Y分別記第一次和第二次取到的球上標(biāo)有的數(shù)字,求的聯(lián)合分布列.
的可能取值為(1,2),(2,1),(2,2).
P{X=1,Y=2}=(1/3)×(2/2)=1/3,P{X=2,Y=1}=(2/3)×(1/2)=1/3,P{X=2,Y=2}=(2/3)×(1/2)=1/3,1/31/321/30121YX例解
見(jiàn)書P69,習(xí)題1的可能取值為例解(0,0),(-1,1),(-1,1/3),(2,0)(X,Y)的聯(lián)合分布律為yX011/301/600-101/31/1225/1200
若存在非負(fù)函數(shù)f(x,y),使對(duì)任意實(shí)數(shù)x,y,二元隨機(jī)變量(X,Y)的分布函數(shù)可表示成如下形式
則稱(X,Y)是二元連續(xù)型隨機(jī)變量。f(x,y)稱為二元隨機(jī)變量(X,Y)的聯(lián)合概率密度函數(shù).二維連續(xù)型隨機(jī)變量的聯(lián)合概率密度定義聯(lián)合概率密度函數(shù)的性質(zhì)非負(fù)性幾何解釋..隨機(jī)事件的概率=曲頂柱體的體積設(shè)二維隨機(jī)變量的概率密度為(1)確定常數(shù)k;
(2)求的分布函數(shù);;
.
(4)求例(1)所以解
(2)當(dāng)時(shí),當(dāng)時(shí),所以,(3)41或解(4)224例已知二維隨機(jī)變量(X,Y)的分布密度為求概率解
1續(xù)解……….x+y=3思考已知二維隨機(jī)變量(X,Y)的分布密度為求概率2241解答
二維均勻分布設(shè)二維隨機(jī)變量的概率密度為
上服從均勻分布.在,則稱是平面上的有界區(qū)域,其面積為其中思考已知二維隨機(jī)變量(X,Y)服從區(qū)域D上的均勻分布,D為x軸,y軸及直線y=2x+1所圍成的三角形區(qū)域。求(1)分布函數(shù);(2)解(X,Y)的密度函數(shù)為y=2x+1-1/2(1)當(dāng)時(shí),分布函數(shù)為y=2x+1-1/2(2)當(dāng)時(shí),y=2x+1-1/2(3)當(dāng)時(shí),所以,所求的分布函數(shù)為0.5y=2x+1-1/2二維正態(tài)分布設(shè)二維隨機(jī)變量的概率密度為其中均為參數(shù)則稱服從參數(shù)為的二維正態(tài)分布
邊緣分布隨機(jī)變量的相互獨(dú)立性邊緣分布marginaldistribution二維隨機(jī)變量,是兩個(gè)隨機(jī)變量視為一個(gè)整體,來(lái)討論其取值規(guī)律的,我們可用分布函數(shù)來(lái)描述其取值規(guī)律。
問(wèn)題:能否由二維隨機(jī)變量的分布來(lái)確定兩個(gè)一維隨機(jī)變量的取值規(guī)律呢?如何確定呢?——邊緣分布問(wèn)題邊緣分布marginaldistribution設(shè)二維隨機(jī)變量的分布函數(shù)為,依次稱為二維隨機(jī)變量關(guān)于和關(guān)于的邊緣分布函數(shù).二維離散型R.v.的邊緣分布如果二維離散型隨機(jī)變量(X,Y)的聯(lián)合分布律為即YXy1y2y3…x1p11p12p13…x2p21p22p23…x3p31p32p33………………二維離散型R.v.的邊緣分布關(guān)于X的邊緣分布關(guān)于Y的邊緣分布YXy1y2y3…Pi.x1p11p12p13…P1.x2p21p22p23…P2.x3p31p32p33…P3.………………p.jp.1p.2p.3…二維離散型R.v.的邊緣分布關(guān)于X的邊緣分布關(guān)于Y的邊緣分布第j列之和Xx1x2x3…概率P1.P2.P3.…第i行之和Yy1y2y3…概率P.1P.2P.3…二維離散型R.v.的邊緣分布例1設(shè)二維離散型隨機(jī)變量(X,Y)的聯(lián)合分布律為YX011/3-101/31/1201/60025/1200求關(guān)于X、Y的邊緣分布關(guān)于Y的邊緣分布Y011/3概率7/121/31/12解關(guān)于X的邊緣分布為X-102概率5/121/65/12YX011/3-101/31/1201/60025/1200(X,Y)的聯(lián)合分布列二維連續(xù)型隨機(jī)變量的邊緣分布
關(guān)于X的邊緣概率密度為關(guān)于Y的邊緣概率密度為的邊緣分布函數(shù)為關(guān)于的邊緣分布函數(shù)為關(guān)于例2
設(shè)(X,Y)的聯(lián)合密度為求k值和兩個(gè)邊緣分布密度函數(shù)解由得當(dāng)時(shí)關(guān)于X的邊緣分布密度為113113解所以,關(guān)于X的邊緣分布密度為所以,關(guān)于Y的邊緣分布密度為當(dāng)時(shí)當(dāng)時(shí)當(dāng)時(shí)關(guān)于Y的邊緣分布密度為邊緣分布密度和概率的計(jì)算例3設(shè)(X,Y)的聯(lián)合分布密度為(1)求k值(2)求關(guān)于X和Y的邊緣密度(3)求概率P(X+Y<1)和P(X>1/2)(2)均勻分布解(1)由得當(dāng)時(shí)-11當(dāng)時(shí)所以,關(guān)于X的邊緣分布密度函數(shù)為-11續(xù)解………..
-11解當(dāng)時(shí)當(dāng)時(shí)所以,關(guān)于Y的邊緣分布密度函數(shù)為解(3)
見(jiàn)課本P59例3如果二維隨機(jī)變量(X,Y)服從正態(tài)分布則兩個(gè)邊緣分布分別服從正態(tài)分布與相關(guān)系數(shù)無(wú)關(guān)可見(jiàn),聯(lián)合分布可以確定邊緣分布,但邊緣分布不能確定聯(lián)合分布例4設(shè)(X,Y)的聯(lián)合分布密度函數(shù)為求關(guān)于X,Y的邊緣分布密度函數(shù)解關(guān)于X的分布密度函數(shù)為所以,同理可得不同的聯(lián)合分布,可有相同的邊緣分布??梢?jiàn),聯(lián)合分布可以確定邊緣分布,但邊緣分布不能確定聯(lián)合分布隨機(jī)變量的相互獨(dú)立性特別,對(duì)于離散型和連續(xù)型的隨機(jī)變量,該定義分別等價(jià)于★★定義設(shè)(X,Y)的聯(lián)合分布函數(shù)為F(x,y),兩個(gè)邊緣分布函數(shù)分別為FX(x),FY(y),如果對(duì)于任意的x,y都有F(x,y)=FX(x)FY(y),則稱隨機(jī)變量X,Y相互獨(dú)立。對(duì)任意i,j對(duì)任意x,y
在實(shí)際問(wèn)題或應(yīng)用中,當(dāng)X的取值與Y的取值互不影響時(shí),我們就認(rèn)為X與Y是相互獨(dú)立的,進(jìn)而把上述定義式當(dāng)公式運(yùn)用.
在X與Y是相互獨(dú)立的前提下,邊緣分布可確定聯(lián)合分布!實(shí)際意義補(bǔ)充說(shuō)明設(shè)(X,Y)的概率分布(律)為證明:X、Y相互獨(dú)立。例1
2/5
1/5
2/5
p.j
2/44/202/204/202
1/42/201/202/2011/42/201/202/201/2
pi.20-1yx逐個(gè)驗(yàn)證等式證
∵X與Y的邊緣分布律分別為∴X、Y相互獨(dú)立2/51/52/5p.i20-1
X2/41/41/4Pj.211/2
Y例2設(shè)(X,Y)的概率密度為求(1)P(0≤X≤1,0≤Y≤1)(2)(X,Y)的邊緣密度,(3)判斷X、Y是否獨(dú)立。解①設(shè)A={(x,y):0≤x≤1,0≤y≤1)}11②邊緣密度函數(shù)分別為當(dāng)時(shí)當(dāng)時(shí)所以,同理可得③所以X與Y相互獨(dú)立。例3已知二維隨機(jī)變量(X,Y)服從區(qū)域D上的均勻分布,D為x軸,y軸及直線y=2x+1所圍成的三角形區(qū)域。判斷X,Y是否獨(dú)立。解(X,Y)的密度函數(shù)為當(dāng)時(shí),所以,關(guān)于X的邊緣分布密度為關(guān)于X的邊緣分布密度為當(dāng)或時(shí)當(dāng)時(shí),所以,關(guān)于Y的邊緣分布密度為關(guān)于Y的邊緣分布密度為當(dāng)或時(shí)所以所以,X與Y不獨(dú)立。設(shè)(X,Y)服從矩形域上的均勻分布,求證X與Y獨(dú)立。例4時(shí)解于是同理所以即X與Y獨(dú)立。時(shí)二維隨機(jī)變量的函數(shù)的分布二維隨機(jī)變量的函數(shù)的分布設(shè)
是二維隨機(jī)變量,
其聯(lián)合分布函數(shù)為
是隨機(jī)變量
的二元函數(shù)
的分布函數(shù)問(wèn)題:如何確定隨機(jī)變量Z的分布呢?二維離散型隨機(jī)變量的函數(shù)的分布設(shè)
是二維離散型隨機(jī)變量,其聯(lián)合分布列為
則是一維的離散型隨機(jī)變量其分布列為例設(shè)的聯(lián)合分布列為
YX-2-10-11/121/123/12?2/121/12032/1202/12分別求出(1)X+Y;(2)X-Y;(3)X2+Y-2的分布列解由(X,Y)的聯(lián)合分布列可得如下表格概率1/121/123/122/121/122/122/12-3-2-1-3/2-1/21310-15/23/253-3-2-1-15/4-11/457解得所求的各分布列為X+Y-3-2-1-3/2-1/213概率1/121/123/122/121/122
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園門衛(wèi)會(huì)客管理制度(2篇)
- 2025年鄉(xiāng)年終工作總結(jié)樣本(2篇)
- 2025年奮斗正當(dāng)時(shí)經(jīng)典演講稿樣本(4篇)
- 固定排水泵工安全技術(shù)操作規(guī)程(2篇)
- 2025年幼兒園小班教師工作計(jì)劃樣本(3篇)
- 電梯安全管理和檢查保養(yǎng)制度模版(2篇)
- 高低壓配電室安全操作規(guī)程(3篇)
- 某企業(yè)職業(yè)衛(wèi)生標(biāo)準(zhǔn)化管理范文(2篇)
- 2025年柜臺(tái)服務(wù)規(guī)范心得體會(huì)樣本(4篇)
- 2025年辦公室年度工作計(jì)劃例文(3篇)
- DB21-T 2931-2018羊肚菌日光溫室栽培技術(shù)規(guī)程
- 貴州省黔東南州2023-2024學(xué)年九年級(jí)上學(xué)期期末文化水平測(cè)試化學(xué)試卷
- 《空調(diào)零部件介紹》課件
- 2024年度醫(yī)院內(nèi)分泌與代謝科述職報(bào)告課件
- 手術(shù)室無(wú)菌操作流程
- 農(nóng)業(yè)機(jī)械控制系統(tǒng)硬件在環(huán)測(cè)試規(guī)范
- 翁潭電站大王山輸水隧洞施工控制網(wǎng)設(shè)計(jì)說(shuō)明書
- 隆胸術(shù)培訓(xùn)課件
- 鋼筋焊接培訓(xùn)課件
- 行政內(nèi)勤培訓(xùn)課件
- 化纖企業(yè)(化學(xué)纖維紡織企業(yè))安全生產(chǎn)操作規(guī)程
評(píng)論
0/150
提交評(píng)論