2024屆廣東省云浮云城區(qū)五校聯(lián)考中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
2024屆廣東省云浮云城區(qū)五校聯(lián)考中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
2024屆廣東省云浮云城區(qū)五校聯(lián)考中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
2024屆廣東省云浮云城區(qū)五校聯(lián)考中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
2024屆廣東省云浮云城區(qū)五校聯(lián)考中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省云浮云城區(qū)五校聯(lián)考中考適應(yīng)性考試數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.12.下列計算結(jié)果正確的是()A. B.C. D.3.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米4.在如圖的計算程序中,y與x之間的函數(shù)關(guān)系所對應(yīng)的圖象大致是()A. B. C. D.5.下列算式中,結(jié)果等于a5的是()A.a(chǎn)2+a3 B.a(chǎn)2?a3 C.a(chǎn)5÷a D.(a2)36.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.227.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.8.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°9.根據(jù)文化和旅游部發(fā)布的《“五一”假日旅游指南》,今年“五一”期間居民出游意愿達(dá)36.6%,預(yù)計“五一”期間全固有望接待國內(nèi)游客1.49億人次,實現(xiàn)國內(nèi)旅游收入880億元.將880億用科學(xué)記數(shù)法表示應(yīng)為()A.8×107 B.880×108 C.8.8×109 D.8.8×101010.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°11.某校有35名同學(xué)參加眉山市的三蘇文化知識競賽,預(yù)賽分?jǐn)?shù)各不相同,取前18名同學(xué)參加決賽.其中一名同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,只需要知道這35名同學(xué)分?jǐn)?shù)的(

).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差12.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.14.解不等式組請結(jié)合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為.15.若|a|=2016,則a=___________.16.新定義[a,b]為一次函數(shù)(其中a≠0,且a,b為實數(shù))的“關(guān)聯(lián)數(shù)”,若“關(guān)聯(lián)數(shù)”[3,m+2]所對應(yīng)的一次函數(shù)是正比例函數(shù),則關(guān)于x的方程1x-1+117.在實數(shù)范圍內(nèi)分解因式:=_________18.如圖,在△ABC中,∠A=60°,若剪去∠A得到四邊形BCDE,則∠1+∠2=______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為加快城鄉(xiāng)對接,建設(shè)美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號)20.(6分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.21.(6分)在一個不透明的布袋里裝有4個標(biāo)有1、2、3、4的小球,它們的形狀、大小完全相同,李強(qiáng)從布袋中隨機(jī)取出一個小球,記下數(shù)字為x,王芳在剩下的3個小球中隨機(jī)取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標(biāo)畫樹狀圖列表,寫出點M所有可能的坐標(biāo);求點在函數(shù)的圖象上的概率.22.(8分)如圖,在平面直角坐標(biāo)系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標(biāo);(3)在拋物線上是否存在點E:它關(guān)于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標(biāo),如果不存在,試說明理由.23.(8分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;24.(10分)在平面直角坐標(biāo)系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當(dāng)BD′∥OA時,求點D′的坐標(biāo);(II)如圖②,當(dāng)α=60°時,求點C′的坐標(biāo);(III)當(dāng)點B,D′,C′共線時,求點C′的坐標(biāo)(直接寫出結(jié)果即可).25.(10分)如圖所示,已知,試判斷與的大小關(guān)系,并說明理由.26.(12分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當(dāng)以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標(biāo).27.(12分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】

連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【題目詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【題目點撥】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.2、C【解題分析】

利用冪的乘方、同底數(shù)冪的乘法、合并同類項及零指數(shù)冪的定義分別計算后即可確定正確的選項.【題目詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【題目點撥】本題考查了冪的運算性質(zhì)及特殊角的三角函數(shù)值的知識,解題的關(guān)鍵是能夠利用有關(guān)法則進(jìn)行正確的運算,難度不大.3、B【解題分析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應(yīng)用.4、A【解題分析】函數(shù)→一次函數(shù)的圖像及性質(zhì)5、B【解題分析】試題解析:A、a2與a3不能合并,所以A選項錯誤;B、原式=a5,所以B選項正確;C、原式=a4,所以C選項錯誤;D、原式=a6,所以D選項錯誤.故選B.6、D【解題分析】分析:根據(jù)條形統(tǒng)計圖得到各數(shù)據(jù)的權(quán),然后根據(jù)中位數(shù)的定義求解.詳解:一共30個數(shù)據(jù),第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關(guān)鍵.7、C【解題分析】

作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【題目詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【題目點撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).8、C【解題分析】【分析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【題目詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【題目點撥】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).9、D【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】880億=88000000000=8.8×1010,

故選D.【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、C【解題分析】

解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內(nèi)錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內(nèi)錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內(nèi)角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【題目點撥】本題考查平行線的判定,難度不大.11、B【解題分析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進(jìn)入決賽了.故選B.點睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關(guān)鍵是正確的求出這組數(shù)據(jù)的中位數(shù)12、C【解題分析】

根據(jù)“上加下減”的原則求解即可.【題目詳解】將函數(shù)y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應(yīng)的函數(shù)解析式是y=2x.故選:C.【題目點撥】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2n+1【解題分析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規(guī)律,根據(jù)規(guī)律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數(shù)字的變化類問題,關(guān)鍵是通過觀察分析得出規(guī)律,根據(jù)規(guī)律求解.14、詳見解析.【解題分析】

先根據(jù)不等式的性質(zhì)求出每個不等式的解集,再在數(shù)軸上表示出來,根據(jù)數(shù)軸找出不等式組公共部分即可.【題目詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【題目點撥】本題考查了解一元一次不等式組的概念.15、±1【解題分析】試題分析:根據(jù)零指數(shù)冪的性質(zhì)(),可知|a|=1,座椅可知a=±1.16、53【解題分析】試題分析:根據(jù)“關(guān)聯(lián)數(shù)”[3,m+2]所對應(yīng)的一次函數(shù)是正比例函數(shù),得到y(tǒng)=3x+m+2為正比例函數(shù),即m+2=0,解得:m=-2,則分式方程為1x-1去分母得:2-(x-1)=2(x-1),去括號得:2-x+1=2x-2,解得:x=53經(jīng)檢驗x=53考點:1.一次函數(shù)的定義;2.解分式方程;3.正比例函數(shù)的定義.17、2(x+)(x-).【解題分析】

先提取公因式2后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【題目詳解】2x2-6=2(x2-3)=2(x+)(x-).

故答案為2(x+)(x-).【題目點撥】本題考查實數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內(nèi)進(jìn)行因式分解的式子的結(jié)果一般要分到出現(xiàn)無理數(shù)為止.18、240.【解題分析】

試題分析:∠1+∠2=180°+60°=240°.考點:1.三角形的外角性質(zhì);2.三角形內(nèi)角和定理.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【解題分析】

(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進(jìn)而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進(jìn)而求出汽車從A地到B地比原來少走多少路程.【題目詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【題目點撥】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.20、(1)見解析;(2).【解題分析】

(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質(zhì)可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進(jìn)而∠C=∠DEC,可證結(jié)論成立;(2)證明△OFD∽△AFE,根據(jù)相似三角形的性質(zhì)即可求出圓的半徑.【題目詳解】(1)證明:連接OD,由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半徑為.【題目點撥】本題考查了切線的性質(zhì),平行線的判定與性質(zhì),等腰三角形的性質(zhì)與判定,圓周角定理的推論,相似三角形的判定與性質(zhì),難度中等,熟練掌握各知識點是解答本題的關(guān)鍵.21、見解析;.【解題分析】

(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)找出點(x,y)在函數(shù)y=x+1的圖象上的情況,利用概率公式即可求得答案.【題目詳解】畫樹狀圖得:共有12種等可能的結(jié)果、、、、、、、、、、、;在所有12種等可能結(jié)果中,在函數(shù)的圖象上的有、、這3種結(jié)果,點在函數(shù)的圖象上的概率為.【題目點撥】本題考查的是用列表法或樹狀圖法求概率,一次函數(shù)圖象上點的坐標(biāo)特征.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.22、(1)k=-,b=1;(1)(0,1)和【解題分析】分析:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得,進(jìn)而得到A、B、D的坐標(biāo),然后分兩種情況討論即可;(3)設(shè)E(a,),E關(guān)于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進(jìn)而得到答案.詳解:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標(biāo)是,點的坐標(biāo)是.∵拋物線的頂點是點,∴點的坐標(biāo)是.∵點是軸上一點,∴設(shè)點的坐標(biāo)是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標(biāo)是.②如果,那么,解得,∴點的坐標(biāo)是.綜上所述:符合要求的點有兩個,其坐標(biāo)分別是和.(3)設(shè)E(a,),E關(guān)于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當(dāng)a=-1時,=;當(dāng)a=1時,=;∴點的坐標(biāo)是或.點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)的性質(zhì)、解析式的求法以及相似三角形的性質(zhì).解答(1)問的關(guān)鍵是要分類討論,解答(3)的關(guān)鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.23、1.【解題分析】分析:本題涉及乘方、負(fù)指數(shù)冪、二次根式化簡、絕對值和特殊角的三角函數(shù)5個考點.在計算時,需要針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.詳解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1.點睛:本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對值等考點的運算.24、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解題分析】

(I)如圖①,當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據(jù)對稱性確定D″的坐標(biāo);(II)如圖②,當(dāng)α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【題目詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對稱性可知,點D″在線段BC′上時,D″(6,4)也滿足條件.綜上所述,滿足條件的點D坐標(biāo)(10,4)或(6,4).(II)如圖②,當(dāng)α=60°時,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當(dāng)B、C′、D′共線時,由(Ⅰ)可知,C′(8,4).②如圖④中,當(dāng)B、C′、D′共線時,BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設(shè)OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【題目點撥】本題考查三角形綜合題、旋轉(zhuǎn)變換、矩形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活應(yīng)用所學(xué)知識解決問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.25、.【解題分析】

首先判斷∠AED與∠ACB是一對同位角,然后根據(jù)已知條件推出DE∥BC,得出兩角相等.【題目詳解】解:∠AED=∠ACB.理由:如圖,分別標(biāo)記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).

∴∠2=∠1.

∴EF∥AB(內(nèi)錯角相等,兩直線平行).

∴∠3=∠ADE(兩直線平行,內(nèi)錯角相等).

∵∠3=∠B(已知),

∴∠B=∠ADE(等量代換).

∴DE∥BC(同位角相等,兩直線平行).

∴∠AED=∠ACB(兩直線平行,同位角相等).【題目點撥】本題重點考查平行線的性質(zhì)和判定,難度適中.26、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解題分析】

(1)把點A的坐標(biāo)代入拋物線的解析式,就可求得拋物線的解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論