版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省盤錦市2024屆中考數(shù)學(xué)模擬精編試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.12.如果(,均為非零向量),那么下列結(jié)論錯誤的是()A.// B.-2=0 C.= D.3.如圖,將△ABC繞點C旋轉(zhuǎn)60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對4.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x25.如圖,在⊙O中,直徑AB⊥弦CD,垂足為M,則下列結(jié)論一定正確的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD6.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為27.從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.8.在-,,0,-2這四個數(shù)中,最小的數(shù)是()A. B. C.0 D.-29.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.10.有五名射擊運動員,教練為了分析他們成績的波動程度,應(yīng)選擇下列統(tǒng)計量中的()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)11.在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點.對于一條直線,當(dāng)它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.1012.下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四個交通標(biāo)志圖(黑白陰影圖片)中為軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則∠C的度數(shù)可以是__________.14.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.15.七巧板是我們祖先的一項創(chuàng)造,被譽為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據(jù)七巧板制作過程的認(rèn)識,求出平行四邊形EFGH_____.16.計算:()0﹣=_____.17.計算:|﹣5|﹣=_____.18.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)
三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負(fù)整數(shù)解.20.(6分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.21.(6分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.22.(8分)P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關(guān)于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O的“冪值”為_____;②判斷當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.23.(8分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?24.(10分)計算:.25.(10分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側(cè)),與y軸交于點C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標(biāo);(2)P(m,t)為拋物線上的一個動點.①當(dāng)點P關(guān)于原點的對稱點P′落在直線BC上時,求m的值;②當(dāng)點P關(guān)于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.26.(12分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.27.(12分)計算:(﹣2)2+20180﹣
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【題目詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【題目點撥】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.2、B【解題分析】試題解析:向量最后的差應(yīng)該還是向量.故錯誤.故選B.3、D【解題分析】
從圖中可以看出,線段AB掃過的圖形面積為一個環(huán)形,環(huán)形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【題目詳解】陰影面積=π.
故選D.【題目點撥】本題的關(guān)鍵是理解出,線段AB掃過的圖形面積為一個環(huán)形.4、D【解題分析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.5、D【解題分析】
根據(jù)垂徑定理判斷即可.【題目詳解】連接DA.∵直徑AB⊥弦CD,垂足為M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故選D.【題目點撥】本題考查的是垂徑定理和圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關(guān)鍵.6、A【解題分析】
根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【題目詳解】觀察圖象可知,共有50個學(xué)生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【題目點撥】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.7、B【解題分析】考點:概率公式.專題:計算題.分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)="m"/n.8、D【解題分析】
根據(jù)正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù),兩個負(fù)數(shù),絕對值大的反而小比較即可.【題目詳解】在﹣,,0,﹣1這四個數(shù)中,﹣1<﹣<0<,故最小的數(shù)為:﹣1.故選D.【題目點撥】本題考查了實數(shù)的大小比較,解答本題的關(guān)鍵是熟練掌握實數(shù)的大小比較方法,特別是兩個負(fù)數(shù)的大小比較.9、A【解題分析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質(zhì)得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質(zhì)、平行四邊形的性質(zhì)、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.10、A【解題分析】試題分析:方差是用來衡量一組數(shù)據(jù)波動大小的量,體現(xiàn)數(shù)據(jù)的穩(wěn)定性,集中程度;方差越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,數(shù)據(jù)越穩(wěn)定.故教練要分析射擊運動員成績的波動程度,只需要知道訓(xùn)練成績的方差即可.故選A.考點:1、計算器-平均數(shù),2、中位數(shù),3、眾數(shù),4、方差11、D【解題分析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.12、B【解題分析】
根據(jù)軸對稱圖形的概念對各選項分析判斷即可得出答案.【題目詳解】A.不是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項正確;C.不是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項錯誤.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、25°或40°或10°【解題分析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據(jù)等腰三角形的性質(zhì)求出∠ADB,再求出∠BDC,然后根據(jù)等腰三角形兩底角相等列式計算即可得解.【題目詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數(shù)可以為25°或40°或10°故答案為25°或40°或10°【題目點撥】本題考查了等腰三角形的性質(zhì),難點在于分情況討論.14、1【解題分析】
先根據(jù)同旁內(nèi)角互補兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質(zhì)知∠APM=∠CQM=118°,由鄰補角定義可得答案.【題目詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【題目點撥】本題主要考查平行線的判定與性質(zhì),解題的關(guān)鍵是掌握平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.15、1【解題分析】
根據(jù)七巧板的性質(zhì)可得BI=IC=CH=HE,因為S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點G到EF的距離為sin45°,根據(jù)平行四邊形的面積即可求解.【題目詳解】由七巧板性質(zhì)可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,F(xiàn)G=EH=BI=,∴點G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【題目點撥】本題考查了七巧板的性質(zhì)、等腰直角三角形的性質(zhì)及平行四邊形的面積公式,熟知七巧板的性質(zhì)是解決問題的關(guān)鍵.16、-1【解題分析】
本題需要運用零次冪的運算法則、立方根的運算法則進行計算.【題目詳解】由分析可得:()0﹣=1-2=﹣1.【題目點撥】熟練運用零次冪的運算法則、立方根的運算法則是本題解題的關(guān)鍵.17、1【解題分析】分析:直接利用二次根式以及絕對值的性質(zhì)分別化簡得出答案.詳解:原式=5-3=1.故答案為1.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.18、或【解題分析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉(zhuǎn)化,通過,與相似.這時,柳暗花明,迎刃而解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、-【解題分析】【分析】先根據(jù)分式的運算法則進行化簡,然后再求出不等式的非負(fù)整數(shù)解,最后把符合條件的x的值代入化簡后的結(jié)果進行計算即可.【題目詳解】原式=,=,=,∵﹣(x﹣1)≥,∴x﹣1≤﹣1,∴x≤0,非負(fù)整數(shù)解為0,∴x=0,當(dāng)x=0時,原式=-.【題目點撥】本題考查了分式的化簡求值,解題的關(guān)鍵是熟練掌握分式的運算法則.20、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解題分析】
(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【題目詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【題目點撥】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.21、(1)證明見解析;(2)3【解題分析】
(1)連接OC,AC,可先證明AC平分∠BAE,結(jié)合圓的性質(zhì)可證明OC∥AE,可得∠OCB=90°,可證得結(jié)論;(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.【題目詳解】(1)證明:連接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半徑,點C為半徑外端,∴CE是⊙O的切線.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四邊形AOCD是平行四邊形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等邊三角形,在Rt△CFB中,CF=CB∴S四邊形ABCD=12(DC+AB)?CF=【題目點撥】本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關(guān)鍵,即有切點時連接圓心和切點,然后證明垂直,沒有切點時,過圓心作垂直,證明圓心到直線的距離等于半徑.22、(1)①20;②當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明見解析;(2)點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解題分析】【題目詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標(biāo),然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點間的距離公式可得到關(guān)于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【題目詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關(guān)于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關(guān)于⊙O的“冪值”=r2﹣d2,故答案為:點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點P的坐標(biāo)為(﹣﹣b,+b),∵點P關(guān)于⊙C的“冪值”為6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范圍是﹣3≤b≤,故答案為:﹣3≤b≤.【題目點撥】本題綜合性質(zhì)較強,考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質(zhì)、相似三角形的性質(zhì)和判定、一次函數(shù)的交點問題、兩點間的距離公式等,依據(jù)兩點間的距離公式列出關(guān)于b的方程,從而求得b的極值是解題的關(guān)鍵.23、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解題分析】
(1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)工作時間=工作總量÷工作效率結(jié)合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,根據(jù)總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結(jié)合總費用不超過145萬元,即可得出關(guān)于m的一元一次不等式,解之取其中的最大值即可得出結(jié)論.【題目詳解】(1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)題意得:,解得:x=40,經(jīng)檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,根據(jù)題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【題目點撥】本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出分式方程;(2)根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式.24、10【解題分析】【分析】先分別進行0次冪的計算、負(fù)指數(shù)冪的計算、二次根式以及絕對值的化簡、特殊角的三角函數(shù)值,然后再按運算順序進行計算即可.【題目詳解】原式=1+9-+4=10-+=10.【題目點撥】本題考查了實數(shù)的混合運算,涉及到0指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值等,熟練掌握各運算的運算法則是解題的關(guān)鍵.25、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標(biāo)為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解題分析】
(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標(biāo),再根據(jù)函數(shù)解析式可以求得點B的坐標(biāo),進而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當(dāng)P′A3取得最小值時,m的值及這個最小值.【題目詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標(biāo)為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關(guān)于原點對稱,∴P′(﹣m,﹣t),當(dāng)y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設(shè)直線BC對應(yīng)的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版泥水作業(yè)班組承包協(xié)議書
- 二零二五年度股權(quán)收益權(quán)轉(zhuǎn)讓合同范本與收益分配3篇
- 二零二五年航空航天零部件制造合同協(xié)議模板2025版3篇
- 二零二五年金融產(chǎn)品居間服務(wù)協(xié)議范本3篇
- 二零二五年度智能化設(shè)備技術(shù)入股合作協(xié)議范本3篇
- GRC材質(zhì)2024裝飾構(gòu)件定制合作協(xié)議版B版
- 二零二五版汽車租賃轉(zhuǎn)讓與保險責(zé)任合同2篇
- 2024混凝土施工勞務(wù)分包合同
- 2024年跨區(qū)域生態(tài)環(huán)境保護合作協(xié)議
- 西安工商學(xué)院《MAPLE編程及工程應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- HG-T+21527-2014回轉(zhuǎn)拱蓋快開人孔
- JTS-167-2-2009重力式碼頭設(shè)計與施工規(guī)范
- DBJ-T15-81-2022 建筑混凝土結(jié)構(gòu)耐火設(shè)計技術(shù)規(guī)程
- GB/T 22849-2024針織T恤衫
- 山東省淄博市2023-2024學(xué)年高二上學(xué)期教學(xué)質(zhì)量檢測化學(xué)試題
- 人工智能在電影與影視制作中的創(chuàng)新與效果提升
- 新生兒腸絞痛的課件
- 酒店民宿自媒體營銷策劃
- 消除母嬰傳播培訓(xùn)課件
- 包裝過程質(zhì)量控制
- 通用電子嘉賓禮薄
評論
0/150
提交評論