2024屆浙江省溫州市民辦重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第1頁
2024屆浙江省溫州市民辦重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第2頁
2024屆浙江省溫州市民辦重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第3頁
2024屆浙江省溫州市民辦重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第4頁
2024屆浙江省溫州市民辦重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省溫州市民辦重點達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯(lián)結(jié)OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數(shù)是()A.1 B.2 C.3 D.42.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是()A.相交B.內(nèi)切C.外離D.內(nèi)含3.據(jù)統(tǒng)計,2018年全國春節(jié)運輸人數(shù)約為3000000000人,將3000000000用科學(xué)記數(shù)法表示為()A.0.3×1010B.3×109C.30×108D.300×1074.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數(shù)為()A. B. C. D.5.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差6.4的平方根是()A.2 B.±2 C.8 D.±87.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.8.若關(guān)于x、y的方程組有實數(shù)解,則實數(shù)k的取值范圍是()A.k>4 B.k<4 C.k≤4 D.k≥49.下列命題正確的是()A.內(nèi)錯角相等B.-1是無理數(shù)C.1的立方根是±1D.兩角及一邊對應(yīng)相等的兩個三角形全等10.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當(dāng)x>0時,y隨x的增大而增大 D.當(dāng)x<0時,y隨x的增大而減小二、填空題(共7小題,每小題3分,滿分21分)11.函數(shù)y=中自變量x的取值范圍是___________.12.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.13.在某公益活動中,小明對本年級同學(xué)的捐款情況進(jìn)行了統(tǒng)計,繪制成如圖所示的不完整的統(tǒng)計圖,其中捐10元的人數(shù)占年級總?cè)藬?shù)的25%,則本次捐款20元的人數(shù)為______人.14.已知x、y是實數(shù)且滿足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____.15.寫出經(jīng)過點(0,0),(﹣2,0)的一個二次函數(shù)的解析式_____(寫一個即可).16.若一個等腰三角形的周長為26,一邊長為6,則它的腰長為____.17.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點;②當(dāng)時,y隨x的增大而減?。畬懗鲆粋€符合條件的函數(shù):__________.三、解答題(共7小題,滿分69分)18.(10分)某市政府大力支持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價為20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量Y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+1.設(shè)李明每月獲得利潤為W(元),當(dāng)銷售單價定為多少元時,每月獲得利潤最大?根據(jù)物價部門規(guī)定,這種護(hù)眼臺燈不得高于32元,如果李明想要每月獲得的利潤2000元,那么銷售單價應(yīng)定為多少元?19.(5分)在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.求每臺電腦、每臺電子白板各多少萬元?根據(jù)學(xué)校實際,需購進(jìn)電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.20.(8分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.21.(10分)如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.求∠BAC的度數(shù);當(dāng)點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運動過程中①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.22.(10分)在平面直角坐標(biāo)系中,關(guān)于的一次函數(shù)的圖象經(jīng)過點,且平行于直線.(1)求該一次函數(shù)表達(dá)式;(2)若點Q(x,y)是該一次函數(shù)圖象上的點,且點Q在直線的下方,求x的取值范圍.23.(12分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標(biāo);(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點D的坐標(biāo).24.(14分)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.2、A【解題分析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關(guān)系.3、B【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).【題目詳解】解:根據(jù)科學(xué)計數(shù)法的定義可得,3000000000=3×109,故選擇B.【題目點撥】本題考查了科學(xué)計數(shù)法的定義,確定n的值是易錯點.4、B【解題分析】根據(jù)折疊前后對應(yīng)角相等可知.

解:設(shè)∠ABE=x,

根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點睛”本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.5、D【解題分析】

根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【題目詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【題目點撥】本題主要考查了統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\用.6、B【解題分析】

依據(jù)平方根的定義求解即可.【題目詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【題目點撥】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關(guān)鍵.7、D【解題分析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.8、C【解題分析】

利用根與系數(shù)的關(guān)系可以構(gòu)造一個兩根分別是x,y的一元二次方程,方程有實數(shù)根,用根的判別式≥0來確定k的取值范圍.【題目詳解】解:∵xy=k,x+y=4,∴根據(jù)根與系數(shù)的關(guān)系可以構(gòu)造一個關(guān)于m的新方程,設(shè)x,y為方程的實數(shù)根.解不等式得故選:C.【題目點撥】本題考查了一元二次方程的根的判別式的應(yīng)用和根與系數(shù)的關(guān)系.解題的關(guān)鍵是了解方程組有實數(shù)根的意義.9、D【解題分析】解:A.兩直線平行,內(nèi)錯角相等,故A錯誤;B.-1是有理數(shù),故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應(yīng)相等的兩個三角形全等,正確.故選D.10、C【解題分析】

由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當(dāng)x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【題目點撥】本題屬于對反比例函數(shù)的基本性質(zhì)以及反比例函數(shù)的在各個象限單調(diào)性的變化二、填空題(共7小題,每小題3分,滿分21分)11、x≥﹣且x≠1【解題分析】

試題解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.12、【解題分析】

因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關(guān)系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【題目詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【題目點撥】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關(guān)系是關(guān)鍵.13、35【解題分析】分析:根據(jù)捐款10元的人數(shù)占總?cè)藬?shù)25%可得捐款總?cè)藬?shù),將總?cè)藬?shù)減去其余各組人數(shù)可得答案.詳解:根據(jù)題意可知,本年級捐款捐款的同學(xué)一共有20÷25%=80(人),則本次捐款20元的有:80?(20+10+15)=35(人),故答案為:35.點睛:本題考查了條形統(tǒng)計圖.計算出捐款總?cè)藬?shù)是解決問題的關(guān)鍵.14、≤M≤6【解題分析】

把原式的xy變?yōu)?xy-xy,根據(jù)完全平方公式特點化簡,然后由完全平方式恒大于等于0,得到xy的范圍;再把原式中的xy變?yōu)?2xy+3xy,同理得到xy的另一個范圍,求出兩范圍的公共部分,然后利用不等式的基本性質(zhì)求出2-2xy的范圍,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范圍即為M的范圍.【題目詳解】由得:即所以由得:即所以∴∴不等式兩邊同時乘以?2得:,即兩邊同時加上2得:即∵∴∴則M的取值范圍是≤M≤6.故答案為:≤M≤6.【題目點撥】此題考查了完全平方公式,以及不等式的基本性質(zhì),解題時技巧性比較強,對已知的式子進(jìn)行了三次恒等變形,前兩次利用拆項法拼湊完全平方式,最后一次變形后整體代入確定出M關(guān)于xy的式子,從而求出M的范圍.要求學(xué)生熟練掌握完全平方公式的結(jié)構(gòu)特點:兩數(shù)的平方和加上或減去它們乘積的2倍等于兩數(shù)和或差的平方.15、y=x2+2x(答案不唯一).【解題分析】

設(shè)此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【題目詳解】∵拋物線過點(0,0),(﹣2,0),∴可設(shè)此二次函數(shù)的解析式為y=ax(x+2),把a=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【題目點撥】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開放性題目,答案不唯一.16、1【解題分析】

題中給出了周長和一邊長,而沒有指明這邊是否為腰長,則應(yīng)該分兩種情況進(jìn)行分析求解.【題目詳解】①當(dāng)6為腰長時,則腰長為6,底邊=26-6-6=14,因為14>6+6,所以不能構(gòu)成三角形;②當(dāng)6為底邊時,則腰長=(26-6)÷2=1,因為6-6<1<6+6,所以能構(gòu)成三角形;故腰長為1.故答案為:1.【題目點撥】此題主要考查等腰三角形的性質(zhì)及三角形三邊關(guān)系的綜合運用,關(guān)鍵是利用三角形三邊關(guān)系進(jìn)行檢驗.17、y=-x+2(答案不唯一)【解題分析】①圖象經(jīng)過(1,1)點;②當(dāng)x>1時.y隨x的增大而減小,這個函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).三、解答題(共7小題,滿分69分)18、(1)35元;(2)30元.【解題分析】

(1)由題意得,每月銷售量與銷售單價之間的關(guān)系可近似看作一次函數(shù),利潤=(定價-進(jìn)價)×銷售量,從而列出關(guān)系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,從而求出銷售單價.【題目詳解】解:(1)由題意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250當(dāng)x=35時,W取得最大值,最大值為2250,答:當(dāng)銷售單價定為35元時,每月可獲得最大利潤為2250元;(2)由題意,得:,解得:,,銷售單價不得高于32元,銷售單價應(yīng)定為30元.答:李明想要每月獲得2000元的利潤,銷售單價應(yīng)定為30元.【題目點撥】本題考查二次函數(shù)的性質(zhì)及其應(yīng)用,還考查拋物線的基本性質(zhì),另外將實際問題轉(zhuǎn)化為求函數(shù)最值問題,從而來解決實際問題.19、(1)每臺電腦0.5萬元,每臺電子白板1.5萬元(2)見解析【解題分析】解:(1)設(shè)每臺電腦x萬元,每臺電子白板y萬元,根據(jù)題意得:,解得:。答:每臺電腦0.5萬元,每臺電子白板1.5萬元。(2)設(shè)需購進(jìn)電腦a臺,則購進(jìn)電子白板(30-a)臺,則,解得:,即a=15,16,17。故共有三種方案:方案一:購進(jìn)電腦15臺,電子白板15臺.總費用為萬元;方案二:購進(jìn)電腦16臺,電子白板14臺.總費用為萬元;方案三:購進(jìn)電腦17臺,電子白板13臺.總費用為萬元。∴方案三費用最低。(1)設(shè)電腦、電子白板的價格分別為x,y元,根據(jù)等量關(guān)系:“1臺電腦+2臺電子白板=3.5萬元”,“2臺電腦+1臺電子白板=2.5萬元”,列方程組求解即可。(2)設(shè)計方案題一般是根據(jù)題意列出不等式組,求不等式組的整數(shù)解。設(shè)購進(jìn)電腦x臺,電子白板有(30-x)臺,然后根據(jù)題目中的不等關(guān)系“總費用不超過30萬元,但不低于28萬元”列不等式組解答。20、(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解題分析】分析:(1)利用對稱性可得點D的坐標(biāo),利用交點式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標(biāo),表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標(biāo);同理可得其他圖形中點P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標(biāo)為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標(biāo)為(,)或(,);綜上所述,點P的坐標(biāo)是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.21、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解題分析】

(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當(dāng)B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD?PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【題目詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當(dāng)B在PA的中垂線上,且P在右時,∠ACD=15°;(Ⅱ)如圖3,當(dāng)B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;(Ⅳ)如圖5,A在PB的中垂線上,且P在左時∠ACD=120°②(Ⅰ)如圖6,,.(Ⅱ)如圖7,,,.,.,,,.設(shè)BD=9k,PD=2k,,,,.【題目點撥】本題是圓的綜合題,熟練掌握30°角所對的直角邊等于斜邊的一半,平行線的性質(zhì),垂直平分線的性質(zhì),相似三角形的判定與性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),勾股定理,同底等高的三角形的面積相等是解答本題的關(guān)鍵.22、(1);(2).【解題分析】

(1)由題意可設(shè)該一次函數(shù)的解析式為:,將點M(4,7)代入所設(shè)解析式求出b的值即可得到一次函數(shù)的解析式;(2)根據(jù)直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結(jié)果.【題目詳解】解:(1)∵一次函數(shù)平行于直線,∴可設(shè)該一次函數(shù)的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數(shù)的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數(shù)圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【題目點撥】本題考查了待定系數(shù)法求一次函數(shù)的解析式以及一次函數(shù)與不等式的關(guān)系,屬于常考題型,熟練掌握待定系數(shù)法與一次函數(shù)與不等式的關(guān)系是解題的關(guān)鍵.23、(1)y=﹣x2﹣x+3;(2)點P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時,點D的坐標(biāo)為(,).【解題分析】

(1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點A、C的坐標(biāo),由點B所在的位置結(jié)合點B的橫坐標(biāo)可得出點B的坐標(biāo),根據(jù)點A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進(jìn)而可得出點P的坐標(biāo);(3)連接AC交OD于點F,由點到直線垂線段最短可找出當(dāng)AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點D的坐標(biāo)即可得出結(jié)論.【題目詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標(biāo)為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論