北京市順義區(qū)順義區(qū)張鎮(zhèn)中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
北京市順義區(qū)順義區(qū)張鎮(zhèn)中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
北京市順義區(qū)順義區(qū)張鎮(zhèn)中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
北京市順義區(qū)順義區(qū)張鎮(zhèn)中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
北京市順義區(qū)順義區(qū)張鎮(zhèn)中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市順義區(qū)順義區(qū)張鎮(zhèn)中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=22.已知,則的值為A. B. C. D.3.下列二次根式中,最簡二次根式的是()A. B. C. D.4.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.5.在下列交通標(biāo)志中,是中心對稱圖形的是()A. B.C. D.6.如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是()A.AE=6cm B.C.當(dāng)0<t≤10時, D.當(dāng)t=12s時,△PBQ是等腰三角形7.歐幾里得的《原本》記載,形如的方程的圖解法是:畫,使,,,再在斜邊上截取.則該方程的一個正根是()A.的長 B.的長 C.的長 D.的長8.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.69.如圖,已知△ADE是△ABC繞點A逆時針旋轉(zhuǎn)所得,其中點D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α10.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近二、填空題(本大題共6個小題,每小題3分,共18分)11.函數(shù)中自變量x的取值范圍是_____;函數(shù)中自變量x的取值范圍是______.12.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°13.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.14.如圖,為保護(hù)門源百里油菜花海,由“芬芳浴”游客中心A處修建通往百米觀景長廊BC的兩條棧道AB,AC.若∠B=56°,∠C=45°,則游客中心A到觀景長廊BC的距離AD的長約為_____米.(sin56°≈0.8,tan56°≈1.5)15.方程=1的解是_____.16.如果a是不為1的有理數(shù),我們把稱為a的差倒數(shù)如:2的差倒數(shù)是,-1的差倒數(shù)是,已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類推,則___________.三、解答題(共8題,共72分)17.(8分)如圖,已知二次函數(shù)與x軸交于A、B兩點,A在B左側(cè),點C是點A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點P從O出發(fā),以每秒2個單位的速度沿x軸負(fù)半軸方向運動,Q從O出發(fā),以每秒個單位的速度沿OC方向運動,運動時間為t.直線PQ與拋物線的一個交點記為M,當(dāng)2PM=QM時,求t的值(直接寫出結(jié)果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF18.(8分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉(zhuǎn),使得點的對應(yīng)點落在射線上,連接,設(shè)(且).(1)當(dāng)時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關(guān)系,并加以證明;(2)當(dāng)時,直接寫出線段,,之間的數(shù)量關(guān)系.19.(8分)關(guān)于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個不相等的實數(shù)根;(2)寫出一個m的值,并求出此時方程的根.20.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x21.(8分)作圖題:在∠ABC內(nèi)找一點P,使它到∠ABC的兩邊的距離相等,并且到點A、C的距離也相等.(寫出作法,保留作圖痕跡)22.(10分)某高中學(xué)校為高一新生設(shè)計的學(xué)生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長?(材質(zhì)及其厚度等暫忽略不計).23.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AD=8,DE=5,求BC的長.24.經(jīng)過江漢平原的滬蓉(上海﹣成都)高速鐵路即將動工.工程需要測量漢江某一段的寬度.如圖①,一測量員在江岸邊的A處測得對岸岸邊的一根標(biāo)桿B在它的正北方向,測量員從A點開始沿岸邊向正東方向前進(jìn)100米到達(dá)點C處,測得∠ACB=68°.(1)求所測之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的測量方案外,請你再設(shè)計一種測量江寬的方案,并在圖②中畫出圖形.(不用考慮計算問題,敘述清楚即可)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

根據(jù)二次根式的性質(zhì)對A進(jìn)行判斷;根據(jù)二次根式的加減法對B進(jìn)行判斷;根據(jù)二次根式的除法法則對C進(jìn)行判斷;根據(jù)二次根式的乘法法則對D進(jìn)行判斷.【題目詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【題目點撥】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進(jìn)行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.2、C【解題分析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.3、C【解題分析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【題目詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.4、B【解題分析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.5、C【解題分析】

解:A圖形不是中心對稱圖形;B不是中心對稱圖形;C是中心對稱圖形,也是軸對稱圖形;D是軸對稱圖形;不是中心對稱圖形故選C6、D【解題分析】(1)結(jié)論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結(jié)論B正確,理由如下:如圖,連接EC,過點E作EF⊥BC于點F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結(jié)論C正確,理由如下:如圖,過點P作PG⊥BQ于點G,∵BQ=BP=t,∴.(4)結(jié)論D錯誤,理由如下:當(dāng)t=12s時,點Q與點C重合,點P運動到ED的中點,設(shè)為N,如圖,連接NB,NC.此時AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時△PBQ不是等腰三角形.故選D.7、B【解題分析】【分析】可以利用求根公式求出方程的根,根據(jù)勾股定理求出AB的長,進(jìn)而求得AD的長,即可發(fā)現(xiàn)結(jié)論.【解答】用求根公式求得:∵∴∴AD的長就是方程的正根.故選B.【點評】考查解一元二次方程已經(jīng)勾股定理等,熟練掌握公式法解一元二次方程是解題的關(guān)鍵.8、C【解題分析】

如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.9、D【解題分析】

利用旋轉(zhuǎn)不變性即可解決問題.【題目詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,

∴∠BAC=∠DAE=α,∠B=∠D,

∵∠ACB=∠DCF,

∴∠CFD=∠BAC=α,

故A,B,C正確,

故選D.【題目點撥】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考??碱}型.10、D【解題分析】

根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【題目詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【題目點撥】本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠2x≥3【解題分析】

根據(jù)分式的意義和二次根式的意義,分別求解.【題目詳解】解:根據(jù)分式的意義得2-x≠0,解得x≠2;根據(jù)二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【題目點撥】數(shù)自變量的范圍一般從幾個方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時,自變量可取全體實數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時,被開方數(shù)為非負(fù)數(shù).12、B【解題分析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.13、150【解題分析】

根據(jù)題意可得等量關(guān)系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據(jù)等量關(guān)系列出方程,解出a的值即可.【題目詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【題目點撥】此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是正確找出題目中的等量關(guān)系,列出方程.14、60【解題分析】

根據(jù)題意和圖形可以分別表示出AD和CD的長,從而可以求得AD的長,本題得以解決.【題目詳解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考點:解直角三角形的應(yīng)用.15、x=3【解題分析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗x=3是分式方程的解,故答案為3.【題目點撥】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結(jié)果須代入最簡公分母進(jìn)行檢驗,結(jié)果為零,則原方程無解;結(jié)果不為零,則為原方程的解.16、.【解題分析】

利用規(guī)定的運算方法,分別算得a1,a2,a3,a4…找出運算結(jié)果的循環(huán)規(guī)律,利用規(guī)律解決問題.【題目詳解】∵a1=4a2=,a3=,a4=,…數(shù)列以4,?三個數(shù)依次不斷循環(huán),∵2019÷3=673,∴a2019=a3=,故答案為:.【題目點撥】此題考查規(guī)律型:數(shù)字的變化類,倒數(shù),解題關(guān)鍵在于掌握運算法則找到規(guī)律.三、解答題(共8題,共72分)17、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解題分析】

(1)把A(-3,0),B(-1,0)代入二次函數(shù)解析式即可求出;由AC=OA知C點坐標(biāo)為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【題目詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數(shù)解析式得解得∴y=-x2-4x-3;由AC=OA知C點坐標(biāo)為(-3,-3),∴直線OC的解析式y(tǒng)=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當(dāng)M(-3t,t)時:,∴當(dāng)M()時:,∴綜上:或(2)設(shè)A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設(shè)、,設(shè)EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF【題目點撥】此題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是熟知相似三角形的判定與性質(zhì)及正確作出輔助線進(jìn)行求解.18、(1)①;②;(2)【解題分析】

(1)①先根據(jù)等邊三角形的性質(zhì)的,進(jìn)而得出,最后用三角形的內(nèi)角和定理即可得出結(jié)論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構(gòu)造出直角三角形即可得出結(jié)論;(2)同②的方法即可得出結(jié)論.【題目詳解】(1)當(dāng)時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉(zhuǎn)所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當(dāng)時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉(zhuǎn)所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.【題目點撥】此題是幾何變換綜合題,主要考查了等邊三角形的性質(zhì),三角形的內(nèi)角和定理,全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),銳角三角函數(shù),作出輔助線構(gòu)造出全等三角形是解本題的關(guān)鍵.19、(1)見解析;(2)x1=1,x2=2【解題分析】

(1)根據(jù)根的判別式列出關(guān)于m的不等式,求解可得;(2)取m=-2,代入原方程,然后解方程即可.【題目詳解】解:(1)根據(jù)題意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,∵(m+2)2+4>1,∴方程總有兩個不相等的實數(shù)根;(2)當(dāng)m=-2時,由原方程得:x2-4x+2=1.整理,得(x-1)(x-2)=1,解得x1=1,x2=2.【題目點撥】本題主要考查根的判別式與韋達(dá)定理,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>1時,方程有兩個不相等的兩個實數(shù)根;②當(dāng)△=1時,方程有兩個相等的兩個實數(shù)根;③當(dāng)△<1時,方程無實數(shù)根.20、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解題分析】

(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【題目詳解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【題目點撥】本題考查了解一元二次方程,熟練掌握因式分解法是解此題的關(guān)鍵.21、見解析【解題分析】

先作出∠ABC的角平分線,再連接AC,作出AC的垂直平分線,兩條平分線的交點即為所求點.【題目詳解】①以B為圓心,以任意長為半徑畫弧,分別交BC、AB于D、E兩點;②分別以D、E為圓心,以大于DE為半徑畫圓,兩圓相交于F點;③連接AF,則直線AF即為∠ABC的角平分線;⑤連接AC,分別以A、C為圓心,以大于AC為半徑畫圓,兩圓相交于F、H兩點;⑥連接FH交BF于點M,則M點即為所求.【題目點撥】本題考查的是角平分線及線段垂直平分線的作法,熟練掌握是解題的關(guān)鍵.22、44cm【解題分析】解:如圖,設(shè)BM與AD相交于點H,CN與AD相交于點G,由題意得,MH=8cm,BH=40cm,則BM=32cm,∵四邊形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論