版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省宿州市泗縣一中高一數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.A. B.C.1 D.2.的圖像是端點為且分別過和兩點的兩條射線,如圖所示,則的解集為A.B.C.D.3.函數(shù)的最大值為()A. B.C.2 D.34.已知集合,,,則A. B.C. D.5.若m,n表示兩條不同直線,α表示平面,則下列命題中真命題是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.方程的實數(shù)根大約所在的區(qū)間是A. B.C. D.7.簡諧運動可用函數(shù)表示,則這個簡諧運動的初相為()A. B.C. D.8.采用系統(tǒng)抽樣方法,從個體數(shù)為1001的總體中抽取一個容量為40的樣本,則在抽取過程中,被剔除的個體數(shù)與抽樣間隔分別為()A.1,25 B.1,20C.3,20 D.3,259.已知集合P=,,則PQ=()A. B.C. D.10.已知命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在半徑為5的圓中,的圓心角所對的扇形的面積為_______.12.已知,則的大小關(guān)系是___________________.(用“”連結(jié))13.若冪函數(shù)的圖象過點,則______.14.已知函數(shù)的圖象與函數(shù)及函數(shù)的圖象分別交于兩點,則的值為__________15.已知函數(shù)的圖象如圖所示,則函數(shù)的解析式為__________.16.已知集合,則集合的子集個數(shù)為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).求函數(shù)的單調(diào)區(qū)間,對稱軸及對稱中心.18.物聯(lián)網(wǎng)(InternetofThings,縮寫:IOT)是基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能行使獨立功能的普通物體實現(xiàn)互聯(lián)互通的網(wǎng)絡(luò).其應(yīng)用領(lǐng)域主要包括運輸和物流、工業(yè)制造、健康醫(yī)療、智能環(huán)境(家庭、辦公、工廠)等,具有十分廣闊的市場前景.現(xiàn)有一家物流公司計劃租地建造倉庫儲存貨物,經(jīng)過市場調(diào)查了解到下列信息:倉庫每月土地占地費(單位:萬元),倉庫到車站的距離x(單位:千米,),其中與成反比,每月庫存貨物費(單位:萬元)與x成正比;若在距離車站9千米處建倉庫,則和分別為2萬元和7.2萬元.(1)求出與解析式;(2)這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項費用之和最?。孔钚≠M用是多少?19.已知函數(shù)(,)為奇函數(shù),且相鄰兩對稱軸間的距離為(1)當(dāng)時,求的單調(diào)遞減區(qū)間;(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當(dāng)時,求函數(shù)的值域20.某藥物研究所開發(fā)了一種新藥,根據(jù)大數(shù)據(jù)監(jiān)測顯示,病人按規(guī)定的劑量服藥后,每毫升血液中含藥量y(微克)與時間x(小時)之間的關(guān)系滿足:前1小時內(nèi)成正比例遞增,1小時后按指數(shù)型函數(shù)y=max?1(m,a為常數(shù),且0<a<1)圖象衰減.如圖是病人按規(guī)定的劑量服用該藥物后,每毫升血液中藥物含量隨時間變化的曲線.(1)當(dāng)a=時,求函數(shù)y=f(x)的解析式,并求使得y≥1的x的取值范圍;(2)研究人員按照M=的值來評估該藥的療效,并測得M≥時此藥有療效.若病人某次服藥后測得x=3時每毫升血液中的含藥量為y=8,求此次服藥有療效的時長.21.設(shè)是定義在上的偶函數(shù),的圖象與的圖象關(guān)于直線對稱,且當(dāng)時,()求的解析式()若在上為增函數(shù),求的取值范圍()是否存在正整數(shù),使的圖象的最高點落在直線上?若存在,求出的值;若不存在,請說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意可得:本題選擇A選項.2、D【解析】作出g(x)=圖象,它與f(x)的圖象交點為和,由圖象可得3、B【解析】先利用,得;再用換元法結(jié)合二次函數(shù)求函數(shù)最值.【詳解】,,當(dāng)時取最大值,.故選:B【點睛】易錯點點睛:注意的限制條件.4、D【解析】本題選擇D選項.5、A【解析】對于A,因為垂直于同一平面的兩條直線相互平行,故A正確;對于B,如果一條直線平行于一個平面,那么平行于已知直線的直線與該平面的位置關(guān)系有平行或在平面內(nèi),故B錯;對于C,因同平行于一個平面的兩條直線異面、相交或平行,故C錯;對于D,與一個平面的平行直線垂直的直線與已知平面是平行、相交或在面內(nèi),故D錯,選A.6、C【解析】方程的根轉(zhuǎn)化為函數(shù)的零點,判斷函數(shù)的連續(xù)性以及單調(diào)性,然后利用零點存在性定理推出結(jié)果即可【詳解】方程的根就是的零點,函數(shù)是連續(xù)函數(shù),是增函數(shù),又,,所以,方程根屬于故選C【點睛】本題考查函數(shù)零點存在性定理的應(yīng)用,考查計算能力7、B【解析】根據(jù)初相定義直接可得.【詳解】由初相定義可知,當(dāng)時的相位稱為初相,所以,函數(shù)的初相為.故選:B8、A【解析】根據(jù)系統(tǒng)抽樣的間隔相等,利用求出抽取過程中被剔除的個體數(shù)和抽樣間隔【詳解】解:因為余1,所以在抽取過程中被剔除的個體數(shù)是1;抽樣間隔是25故選:A9、B【解析】根據(jù)集合交集定義求解.【詳解】故選:B【點睛】本題考查交集概念,考查基本分析求解能力,屬基礎(chǔ)題.10、D【解析】由題意可知,命題“,”是真命題,再利用一元二次不等式的解集與判別式的關(guān)系即可求出結(jié)果.【詳解】由于命題“,”是假命題,所以命題“,”是真命題;所以,解得.故選:D.【點睛】本題考查了簡易邏輯的判定、一元二次不等式的解集與判別式的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先根據(jù)弧度的定義求得扇形的弧長,即可由扇形面積公式求得扇形的面積.【詳解】設(shè)扇形的弧長為根據(jù)弧度定義可知則由扇形面積公式代入可得故答案為:【點睛】本題考查了弧度的定義,扇形面積的求法,屬于基礎(chǔ)題.12、【解析】利用特殊值即可比較大小.【詳解】解:,,,故.故答案為:.13、【解析】設(shè),將點代入函數(shù)的解析式,求出實數(shù)的值,即可求出的值.【詳解】設(shè),則,得,,因此,.故答案為.【點睛】本題考查冪函數(shù)值的計算,解題的關(guān)鍵就是求出冪函數(shù)的解析式,考查運算求解能力,屬于基礎(chǔ)題.14、【解析】利用函數(shù)及函數(shù)的圖象關(guān)于直線對稱可得點在函數(shù)的圖象上,進而可得的值【詳解】由題意得函數(shù)及函數(shù)的圖象關(guān)于直線對稱,又函數(shù)的圖象與函數(shù)及函數(shù)的圖象分別交于兩點,所以,從而點的坐標為由題意得點在函數(shù)的圖象上,所以,所以故答案為4【點睛】解答本題的關(guān)鍵有兩個:一是弄清函數(shù)及函數(shù)的圖象關(guān)于直線對稱,從而得到點也關(guān)于直線對稱,進而得到,故得到點的坐標為;二是根據(jù)點在函數(shù)的圖象上得到所求值.考查理解和運用能力,具有靈活性和綜合性15、【解析】根據(jù)最大值得,再由圖像得周期,從而得,根據(jù)時,取得最大值,利用整體法代入列式求解,再結(jié)合的取值范圍可得.【詳解】根據(jù)圖像的最大值可知,,由,可得,所以,再由得,,所以,因為,所以,故函數(shù)的解析式為.故答案為:.16、2【解析】先求出然后直接寫出子集即可.【詳解】,,所以集合的子集有,.子集個數(shù)有2個.故答案為:2.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、函數(shù)增區(qū)間為;減區(qū)間為;對稱軸為;對稱中心為【解析】根據(jù)的單調(diào)區(qū)間、對稱軸及對稱中心即可得出所求的.【詳解】函數(shù)增區(qū)間為同理函數(shù)減區(qū)間為令其對稱軸為令其對稱中心為【點睛】本題主要考查的是正弦函數(shù)的圖像和性質(zhì),考查學(xué)生對正弦函數(shù)圖像和性質(zhì)的理解和應(yīng)用,同時考查學(xué)生的計算能力,是中檔題.18、(1),(2)把倉庫建在距離車站4千米處才能使兩項費用之和最小,最小費用是7.2萬元【解析】(1)設(shè)出與以及與x的解析式,將x=9的費用代入,求得答案;(2)列出兩項費用之和的表達式,利用基本不等式求得其最小值,可得答案.【小問1詳解】設(shè),,其中,當(dāng)時,,.解得,,所以,.【小問2詳解】設(shè)兩項費用之和為z(單位:萬元)則,當(dāng)且僅當(dāng),即時,“”成立,所以這家公司應(yīng)該把倉庫建在距離車站4千米處才能使兩項費用之和最小,最小費用是7.2萬元.19、(1),](2)值域為[,]【解析】(1)利用三角恒等變換化簡的解析式,根據(jù)條件,可求出周期和,結(jié)合奇函數(shù)性質(zhì),求出,再用整體代入法求出內(nèi)的遞減區(qū)間;(2)利用函數(shù)的圖象變換規(guī)律,求出的解析式,再利用正弦函數(shù)定義域,即可求出時的值域.【詳解】解:(1)由題意得,因相鄰兩對稱軸之間距離為,所以,又因為函數(shù)為奇函數(shù),所以,∴,因為,所以故函數(shù)令.得.令得,因為,所以函數(shù)的單調(diào)遞減區(qū)間為,](2)由題意可得,因為,所以所以,.即函數(shù)的值域為[,]【點睛】本題主要考查正弦函數(shù)在給定區(qū)間內(nèi)的單調(diào)性和值域,包括周期性,奇偶性,單調(diào)性和最值,還涉及三角函數(shù)圖像的平移伸縮和三角恒等變換中的輔助角公式.20、(1),(2)小時【解析】(1)根據(jù)圖像求出解析式;令直接解出的取值范圍;(2)先求出,得到,根據(jù)單調(diào)性計算出解集即可.【小問1詳解】當(dāng)時,與成正比例,設(shè)為,則;所以,當(dāng)時,故當(dāng)時,令解得:,當(dāng)時,令得:,綜上所述,使得的的取值范圍為:【小問2詳解】當(dāng)時,,解得所以,則令,解得,由單調(diào)性可知的解集為,所以此次服藥產(chǎn)生療效的時長為小時21、(1);(2);(3)見解析.【解析】分析:()當(dāng)時,,;當(dāng)時,,從而可得結(jié)果;()由題設(shè)知,對恒成立,即對恒成立,于是,,從而;()因為為偶函數(shù),故只需研究函數(shù)在的最大值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,討論兩種情況,即可篩選出符合題意的正整數(shù).詳解:()當(dāng)時,,;當(dāng)時,,∴,()由題設(shè)知,對恒成立,即對恒成立,于是,,從而()因為為偶函數(shù),故只需研究函數(shù)在的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 承包荒山合同(2篇)
- 二零二五年度環(huán)保型排水溝建造與養(yǎng)護合同4篇
- 二零二五版新能源電動汽車充電設(shè)施建設(shè)服務(wù)合同范本2篇
- 2025年度二零二五年度民辦學(xué)校教師學(xué)術(shù)交流與合作合同4篇
- 二零二五年度出口貿(mào)易合同中英雙語不可抗力條款合同范本4篇
- 二零二五年度建筑外墻裝飾面磚采購合同3篇
- 二零二五年度廚師健康管理與職業(yè)發(fā)展規(guī)劃合同4篇
- 二零二五年度臨時工勞務(wù)派遣服務(wù)合同范本6篇
- 2025年度設(shè)施農(nóng)業(yè)大棚租賃合同范本4篇
- 2025年度個人房產(chǎn)買賣合同范本(含貸款及還款安排)4篇
- CJT 511-2017 鑄鐵檢查井蓋
- 配電工作組配電網(wǎng)集中型饋線自動化技術(shù)規(guī)范編制說明
- 職業(yè)分類表格
- 2024高考物理全國乙卷押題含解析
- 廣東省深圳高級中學(xué)2023-2024學(xué)年八年級下學(xué)期期中考試物理試卷
- 介入科圍手術(shù)期護理
- 青光眼術(shù)后護理課件
- 設(shè)立工程公司組建方案
- 設(shè)立項目管理公司組建方案
- 《物理因子治療技術(shù)》期末考試復(fù)習(xí)題庫(含答案)
- 退款協(xié)議書范本(通用版)docx
評論
0/150
提交評論