版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年海南昌江縣礦區(qū)中學高一上數(shù)學期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.函數(shù)的最小正周期是()A. B.C. D.32.已知函數(shù),則的()A.最小正周期,最大值為 B.最小正周期為,最大值為C.最小正周期為,最大值為 D.最小正周期為,最大值為3.對于空間中的直線,以及平面,,下列說法正確的是A.若,,,則B.若,,,則C.若,,,則D.若,,,則4.已知冪函數(shù)的圖象過點,則的值為()A. B.1C.2 D.45.某學生離家去學校,由于怕遲到,一開始就跑步,等跑累了再步行走完余下的路程,若以縱軸表示離家的距離,橫軸表示離家后的時間,則下列四個圖形中,符合該學生走法的是()A. B.C. D.6.如圖,一個空間幾何體的主視圖、左視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長為1,那么這個幾何體的體積為A.1 B.C. D.7.若函數(shù)是定義在上的偶函數(shù),則()A.1 B.3C.5 D.78.,則A.1 B.2C.26 D.109.已知x是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.()A.0 B.1C.6 D.11.函數(shù)的圖像大致為()A. B.C. D.12.英國物理學家和數(shù)學家牛頓提出了物體在常溫環(huán)境下溫度變化的冷卻模型,設(shè)物體的初始溫度為,環(huán)境溫度為,其中,經(jīng)過后物體溫度滿足(其中k為正常數(shù),與物體和空氣的接觸狀況有關(guān)).現(xiàn)有一個的物體,放在的空氣中冷卻,后物體的溫度是,則()(參考數(shù)據(jù):)A.1.17 B.0.85C.0.65 D.0.23二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)且(1)若函數(shù)在區(qū)間上恒有意義,求實數(shù)的取值范圍;(2)是否存在實數(shù),使得函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在,求出的值;若不存在,請說明理由14.在中,若,則的形狀一定是___________三角形.15.已知冪函數(shù)的圖象過點,則___________.16.函數(shù)的最大值是____________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.如圖,平行四邊形中,,分別是,的中點,為與的交點,若,,試以,為基底表示、、18.已知的部分圖象如圖.(1)求函數(shù)的解析式;(2)求函數(shù)在上的單調(diào)增區(qū)間.19.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數(shù)=m·n,x∈R.(1)求函數(shù)的最大值;(2)若且=1,求值.20.已知函數(shù),(其中,,),的相鄰兩條對稱軸間的距離為,且圖象上一個最高點的坐標為.(Ⅰ)求的解析式;(Ⅱ)求的單調(diào)遞減區(qū)間;(Ⅲ)當時,求的值域.21.已知.(1)若在第二象限,求的值;(2)已知,且,求值.22.函數(shù).(1)求,;(2)求函數(shù)在上的最大值與最小值.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】根據(jù)解析式,由正切函數(shù)的性質(zhì)求最小正周期即可.【詳解】由解析式及正切函數(shù)的性質(zhì),最小正周期.故選:A.2、B【解析】利用輔助角公式化簡得到,求出最小正周期和最大值.【詳解】所以最小正周期為,最大值為2.故選:B3、D【解析】根據(jù)空間直線和平面的位置關(guān)系對四個選項逐一排除,由此確定正確的選項【詳解】對于A選項,可能異面,故A錯誤;對于B選項,可能有,故B錯誤;對于C選項,的夾角不一定為90°,故C錯誤;因為,故,因為,故,故D正確,故選D.【點睛】本小題主要考查空間兩條直線的位置關(guān)系,考查直線和平面、平面和平面位置關(guān)系的判斷,屬于基礎(chǔ)題.4、C【解析】設(shè)出冪函數(shù)的解析式,利用給定點求出解析式即可計算作答.【詳解】依題意,設(shè),則有,解得,于得,所以.故選:C5、A【解析】縱軸表示離家的距離,所以在出發(fā)時間為可知C,D錯誤,再由剛開始時速度較快,后面速度較慢,可根據(jù)直線的傾斜程度得到答案.【詳解】當時間時,,故排除C,D;由于剛開始時速度較快,后面速度較慢,所以前段時間的直線的傾斜角更大.故選:A.【點睛】本題考查根據(jù)實際問題抽象出對應(yīng)問題的函數(shù)圖象,考查抽象概括能力,屬于容易題.6、D【解析】由三視圖可知:此立體圖形是一個底面為等腰直角三角形,一條棱垂直于底面的三棱錐;所以其體積為.故選D.考點:三視圖和立體圖形的轉(zhuǎn)化;三棱錐的體積.7、C【解析】先根據(jù)偶函數(shù)求出a、b的值,得到解析式,代入直接求解.【詳解】因為偶函數(shù)的定義域關(guān)于原點對稱,則,解得.又偶函數(shù)不含奇次項,所以,即,所以,所以.故選:C8、B【解析】根據(jù)題意,由函數(shù)的解析式可得,進而計算可得答案.【詳解】根據(jù)題意,,則;故選B.【點睛】本題考查分段函數(shù)函數(shù)值的計算,注意分析函數(shù)的解析式.解決分段函數(shù)求值問題的策略:(1)在求分段函數(shù)的值f(x0)時,一定要首先判斷x0屬于定義域的哪個子集,然后再代入相應(yīng)的關(guān)系式;(2)分段函數(shù)是指自變量在不同的取值范圍內(nèi),其對應(yīng)法則也不同的函數(shù),分段函數(shù)是一個函數(shù),而不是多個函數(shù);分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集,故解分段函數(shù)時要分段解決;(3)求f(f(f(a)))的值時,一般要遵循由里向外逐層計算的原則.9、A【解析】解一元二次不等式得或,再根據(jù)集合間的基本關(guān)系,即可得答案;【詳解】或,或,反之不成立,“”是“”的充分不必要條件,故選:A.10、B【解析】首先根據(jù)對數(shù)的運算法則,對式子進行相應(yīng)的變形、整理,求得結(jié)果即可.【詳解】,故選B.【點睛】該題考查的是有關(guān)對數(shù)的運算求值問題,涉及到的知識點有對數(shù)的運算法則,熟練掌握對數(shù)的運算法則是解題的關(guān)鍵.11、B【解析】分析:通過研究函數(shù)奇偶性以及單調(diào)性,確定函數(shù)圖像.詳解:為奇函數(shù),舍去A,舍去D;,所以舍去C;因此選B.點睛:有關(guān)函數(shù)圖象識別問題的常見題型及解題思路(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).12、D【解析】根據(jù)所給公式,將所給條件中的溫度相應(yīng)代入,利用對數(shù)的運算求解即可.【詳解】根據(jù)題意:的物體,放在的空氣中冷卻,后物體的溫度是,有:,所以,故,即,故選:D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、(1)(2)存在;(或)【解析】(1)由題意,得在上恒成立,參變分離得恒成立,再令新函數(shù),判斷函數(shù)的單調(diào)性,求解最大值,從而求出的取值范圍;(2)在(1)的條件下,討論與兩種情況,利用復(fù)合函數(shù)同增異減的性質(zhì)求解對應(yīng)的取值范圍,再利用最大值求解參數(shù),并判斷是否能取到.【小問1詳解】由題意,在上恒成立,即在恒成立,令,則在上恒成立,令所以函數(shù)在在上單調(diào)遞減,故則,即的取值范圍為.【小問2詳解】要使函數(shù)在區(qū)間上為增函數(shù),首先在區(qū)間上恒有意義,于是由(1)可得,①當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為增函數(shù),故且,即,此時的最大值為即,滿足題意②當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為減函數(shù),故且,即,此時的最大值為即,滿足題意綜上,存在(或)【點睛】一般關(guān)于不等式在給定區(qū)間上恒成立的問題都可轉(zhuǎn)化為最值問題,參變分離后得恒成立,等價于;恒成立,等價于成立.14、等腰【解析】根據(jù)可得,利用兩角和的正弦公式展開,再逆用兩角差的正弦公式化簡,結(jié)合三角形內(nèi)角的范圍可得,即可得的形狀.【詳解】因,,所以,即,所以,可得:,因為,,所以所以,即,故是等腰三角形.故答案為:等腰.15、【解析】由冪函數(shù)的解析式的形式可求出和的值,再將點代入可求的值,即可求解.【詳解】因為是冪函數(shù),所以,,又的圖象過點,所以,解得,所以.故答案為:.16、【解析】把函數(shù)化為的形式,然后結(jié)合輔助角公式可得【詳解】由已知,令,,,則,所以故答案為:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、【解析】分析:直接利用共線向量的性質(zhì)、向量加法與減法的三角形法則求解即可.詳解:由題意,如圖,,連接,則是的重心,連接交于點,則是的中點,∴點在上,∴,故答案為;;∴點睛:向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單)18、(1);(2)和.【解析】(1)由圖知:且可求,再由,結(jié)合已知求,寫出解析式即可.(2)由正弦函數(shù)的單調(diào)性,知上遞增,再結(jié)合給定區(qū)間,討論值確定其增區(qū)間.【詳解】(1)由圖知:且,∴.又,即,而,∴.綜上,.(2)∵,∴.當時,;當時,,又,∴函數(shù)在上的單調(diào)增區(qū)間為和.19、(1)f(x)的最大值是4(2)-【解析】(1)先由向量數(shù)量積坐標表示得到函數(shù)的三角函數(shù)解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數(shù)值,再有余弦的和角公式求的值【詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【點睛】本題考查平面向量的綜合題20、(1)(2)(3)【解析】(Ⅰ)由相鄰兩對稱軸間距離是半個周期可求得,再由最高點為可得A,;(Ⅱ)利用正弦函數(shù)的單調(diào)性,解不等式可得減區(qū)間;(Ⅲ)由已知求得,由正弦函數(shù)的性質(zhì)可得值域試題解析:(Ⅰ)相鄰兩條對稱軸間距離為,,即,而由得,圖象上一個最高點坐標為,,,,,,.(Ⅱ)由,得,單調(diào)減區(qū)間為.(Ⅲ),,,的值域為.21、(1)(2)【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源項目用變壓器集成安裝與運維服務(wù)合同2篇
- 2025年岳麓版八年級科學上冊月考試卷含答案
- 二零二五年度工廠承包技術(shù)改造升級合同范本3篇
- 2025年度智能出租車平臺司機全面聘用協(xié)議3篇
- 2024年度教育培訓機構(gòu)買賣意向金及教學質(zhì)量保障協(xié)議3篇
- 2024年食品儲藏合同:專用冷庫
- 二零二五年度水庫除險加固項目內(nèi)部承包合同樣本3篇
- 二零二五年垃圾桶采購與廢棄物資源化利用合同2篇
- 家庭節(jié)能環(huán)保的未來趨勢與挑戰(zhàn)
- 2024年版銀杏種苗買賣協(xié)議版B版
- 超市安全生產(chǎn)教育培訓計劃
- 電氣安全的技術(shù)措施和組織措施參考
- 國際結(jié)算英文選擇題附答案
- 20以內(nèi)加減法口算題(10000道)(A4直接打印-每頁100題)
- 結(jié)售匯統(tǒng)計培訓課件
- 精神病健康教育知識宣傳
- 咸寧職業(yè)技術(shù)學院學生實習鑒定表
- 工程技術(shù)資料管理方案
- 三年級上冊語文第27課《一個粗瓷大碗》同步練習(含答案)
- 河南省駐馬店市重點中學2023-2024學年九年級上學期12月月考語文試題(無答案)
- 咨詢服務(wù)協(xié)議書范本(完整版)
評論
0/150
提交評論