2023-2024學(xué)年襄樊市重點中學(xué)數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2023-2024學(xué)年襄樊市重點中學(xué)數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2023-2024學(xué)年襄樊市重點中學(xué)數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2023-2024學(xué)年襄樊市重點中學(xué)數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2023-2024學(xué)年襄樊市重點中學(xué)數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年襄樊市重點中學(xué)數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知某種樹木的高度(單位:米)與生長年限t(單位:年,)滿足如下的邏輯斯諦(Logistic)增長模型:,其中為自然對數(shù)的底數(shù),設(shè)該樹栽下的時刻為0,則該種樹木生長至3米高時,大約經(jīng)過的時間為()A.2年 B.3年C.4年 D.5年2.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,若,則不等式解集為A. B.C. D.3.已知指數(shù)函數(shù)是減函數(shù),若,,,則m,n,p的大小關(guān)系是()A. B.C. D.4.對于兩條不同的直線l1,l2,兩個不同的平面α,β,下列結(jié)論正確的A.若l1∥α,l2∥α,則l1∥l2 B.若l1∥α,l1∥β,則α∥βC若l1∥l2,l1∥α,則l2∥α D.若l1∥l2,l1⊥α,則l2⊥α5.已知M,N都是實數(shù),則“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要6.下列函數(shù)滿足在定義域上為減函數(shù)且為奇函數(shù)的是()A. B.C. D.7.已知,求().A.6 B.7C.8 D.98.樣本,,,的平均數(shù)為,樣本,,,的平均數(shù)為,則樣本,,,,,,,的平均數(shù)為A B.C. D.9.=(

)A. B.C. D.10.設(shè),且,下列選項中一定正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的半徑為4,圓心角為,則扇形的面積為___________.12.已知非零向量、滿足,若,則、夾角的余弦值為_________.13.關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是______14.___________15.若a∈{1,a2﹣2a+2},則實數(shù)a的值為___________.16.化簡:________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,,且.(1)求的值;(2)求的值.18.求值:(1)(2)已知,求的值19.已知函數(shù)(1)求的定義域;(2)判斷的奇偶性,并說明理由;(3)設(shè),證明:20.如圖所示,在四棱錐P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a,PA=PC=a,(1)求證:PD⊥平面ABCD;(2)求證:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值21.在三棱錐中,,,O是線段AC的中點,M是線段BC的中點.(1)求證:PO⊥平面ABC;(2)求直線PM與平面PBO所成的角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)題意,列方程,即可求解.【詳解】由題意可得,令,即,解得:t=4.故選:C2、B【解析】,又函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,所以,解得.考點:偶函數(shù)的性質(zhì).【思路點睛】本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進行轉(zhuǎn)化是解決本題的關(guān)鍵.根據(jù)函數(shù)奇偶性可得,再根據(jù)函數(shù)的單調(diào)性,可得;然后再解不等式即可求出結(jié)果3、B【解析】由已知可知,再利用指對冪函數(shù)的性質(zhì),比較m,n,p與0,1的大小,即可得解.【詳解】由指數(shù)函數(shù)是減函數(shù),可知,結(jié)合冪函數(shù)的性質(zhì)可知,即結(jié)合指數(shù)函數(shù)的性質(zhì)可知,即結(jié)合對數(shù)函數(shù)的性質(zhì)可知,即,故選:B.【點睛】方法點睛:本題考查比較大小,比較指數(shù)式和對數(shù)式的大小,可以利用函數(shù)的單調(diào)性,引入中間量;有時也可用數(shù)形結(jié)合的方法,解題時要根據(jù)實際情況來構(gòu)造相應(yīng)的函數(shù),利用函數(shù)單調(diào)性進行比較,如果指數(shù)相同,而底數(shù)不同則構(gòu)造冪函數(shù),若底數(shù)相同而指數(shù)不同則構(gòu)造指數(shù)函數(shù),若引入中間量,一般選0或1.4、D【解析】詳解】A.若l1∥α,l2∥α,則兩條直線可以相交可以平行,故A選項不正確;B.若l1∥α,l1∥β,則α∥β,當(dāng)兩條直線平行時,兩個平面可以是相交的,故B不正確;C.若l1∥l2,l1∥α,則l2∥α,有可能在平面內(nèi),故C不正確;D.若l1∥l2,l1⊥α,則l2⊥α,根據(jù)課本的判定定理得到是正確的.故答案為D.5、B【解析】用定義法進行判斷.【詳解】充分性:取,滿足.但是無意義,所以充分性不滿足;必要性:當(dāng)成立時,則有,所以.所以必要性滿足.故選:B6、C【解析】根據(jù)各個基本初等函數(shù)的性質(zhì),結(jié)合函數(shù)變換的性質(zhì)判斷即可【詳解】對A,為偶函數(shù),故A錯誤;對B,為偶函數(shù),故B錯誤;對C,在定義域上為減函數(shù)且為奇函數(shù),故C正確;對D,在和上分別單調(diào)遞減,故D錯誤;故選:C【點睛】本題主要考查了常見基本初等函數(shù)的性質(zhì),屬于基礎(chǔ)題7、B【解析】利用向量的加法規(guī)則求解的坐標(biāo),結(jié)合模長公式可得.【詳解】因為,所以,所以.故選:B.【點睛】本題主要考查平面向量的坐標(biāo)運算,明確向量的坐標(biāo)運算規(guī)則是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).8、D【解析】樣本,,,的總和為,樣本,,,的總和為,樣本,,,,,,,的平均數(shù)為,選D.9、A【解析】由題意可得:.本題選擇A選項10、D【解析】舉出反例即可判斷AC,根據(jù)不等式的性質(zhì)即可判斷B,利用作差法即可判斷D.【詳解】解:對于A,當(dāng)時,不成立,故A錯誤;對于B,若,則,故B錯誤;對于C,當(dāng)時,,故C錯誤;對于D,,因為,所以,,所以,即,故D正確.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先計算扇形的弧長,再利用扇形的面積公式可求扇形的面積【詳解】根據(jù)扇形的弧長公式可得,根據(jù)扇形的面積公式可得故答案為:12、【解析】本題首先可以根據(jù)得出,然后將其化簡為,最后帶入即可得出結(jié)果.【詳解】令向量與向量之間的夾角為,因為,所以,即,,,,因為,所以,故答案為:.【點睛】本題考查向量垂直的相關(guān)性質(zhì),若兩個向量垂直,則這兩個向量的數(shù)量積為,考查計算能力,考查化歸與轉(zhuǎn)化思想,是簡單題。13、【解析】對m進行討論,變形,構(gòu)造新函數(shù)求導(dǎo),利用單調(diào)性求解最值可得實數(shù)m的取值范圍;【詳解】解:由上,;當(dāng)時,顯然也不成立;;可得設(shè),其定義域為R;則,令,可得;當(dāng)上時,;當(dāng)上時,;當(dāng)時;取得最大值為可得,;解得:;故答案為.【點睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性和最值中的應(yīng)用,屬于難題.14、【解析】利用、兩角和的正弦展開式進行化簡可得答案.【詳解】故答案為:.15、2【解析】利用集合的互異性,分類討論即可求解【詳解】因為a∈{1,a2﹣2a+2},則:a=1或a=a2﹣2a+2,當(dāng)a=1時:a2﹣2a+2=1,與集合元素的互異性矛盾,舍去;當(dāng)a≠1時:a=a2﹣2a+2,解得:a=1(舍去)或a=2;故答案為:2【點睛】本題考查集合的互異性問題,主要考查學(xué)生的分類討論思想,屬于基礎(chǔ)題16、-1【解析】原式)(.故答案為【點睛】本題的關(guān)鍵點有:先切化弦,再通分;利用輔助角公式化簡;同角互化.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】(1)由已知根據(jù)同角三角函數(shù)的基本關(guān)系可求得,根據(jù)代入即可求得求得結(jié)果.(2)由(1)利用二倍角公式,可求得,進而可得的值,根據(jù)角的范圍,即可確定結(jié)果.【詳解】(1)∵,且∴∴又∵∴(2)∴∴或∵∴又∵∴∵,且∴又∵∴∴【點睛】本題考查同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角和與差的三角函數(shù),考查已知三角函數(shù)值求角,屬于基礎(chǔ)題.18、(1)0;(2)【解析】(1)由指數(shù)冪的運算性質(zhì)及對數(shù)的運算性質(zhì)可求解;(2)由誘導(dǎo)公式即同角三角函數(shù)關(guān)系可求解.【詳解】(1)原式;(2)原式.19、(1)(2)偶函數(shù);理由見解析(3)證明見解析【解析】(1)根據(jù)對數(shù)函數(shù)的真數(shù)大于0建立不等式求解;(2)根據(jù)函數(shù)的奇偶性定義判斷即可;(3)利用不等式的性質(zhì)及對數(shù)函數(shù)的單調(diào)性證明即可.【小問1詳解】因為,即,所以函數(shù)的定義域是【小問2詳解】因為,都有,且,所以函數(shù)為偶函數(shù)【小問3詳解】因為,所以所以所以因為是增函數(shù),所以因為,,所以20、(1)見解析(2)見解析(3)【解析】(1)證明:∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD(2)證明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四邊形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC?平面PAC,∴平面PAC⊥平面PBD(3)設(shè)AC∩BD=O,連接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD為二面角P-AC-D的平面角.易知OD=.在Rt△PDO中,tan∠POD=.考點:平面與平面垂直的判定.21、(1)證明見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論