2024屆安徽省淮南五中數(shù)學高一上期末經(jīng)典模擬試題含解析_第1頁
2024屆安徽省淮南五中數(shù)學高一上期末經(jīng)典模擬試題含解析_第2頁
2024屆安徽省淮南五中數(shù)學高一上期末經(jīng)典模擬試題含解析_第3頁
2024屆安徽省淮南五中數(shù)學高一上期末經(jīng)典模擬試題含解析_第4頁
2024屆安徽省淮南五中數(shù)學高一上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省淮南五中數(shù)學高一上期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的上單調遞減,則的取值范圍是()A. B.C. D.2.已知命題“,使”是假命題,則實數(shù)的取值范圍是()A. B.C. D.3.簡諧運動可用函數(shù)表示,則這個簡諧運動的初相為()A. B.C. D.4.如圖,在中,是的中點,若,則實數(shù)的值是A. B.1C. D.5.“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要6.將函數(shù)的圖象沿軸向右平移個單位后,得到的函數(shù)圖象關于軸對稱,則的值可以是()A. B.C. D.7.一條直線與兩條平行線中的一條為異面直線,則它與另一條()A.相交 B.異面C.相交或異面 D.平行8.若函數(shù)是偶函數(shù),則的單調遞增區(qū)間為()A. B.C. D.9.已知向量滿足,,則A.4 B.3C.2 D.010.下列函數(shù)中,在區(qū)間上為增函數(shù)的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)y=loga(2-ax)在[0,1]上單調遞減,則a的取值范圍是________12.將正方形沿對角線折成直二面角,有如下四個結論:①;②是等邊三角形;③與所成的角為,④取中點,則為二面角的平面角其中正確結論是__________.(寫出所有正確結論的序號)13.若弧度數(shù)為2的圓心角所對的弦長為2,則這個圓心角所夾扇形的面積是___________14.,的定義域為____________15.已知函數(shù)則_______.16.已知函數(shù),若,則_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)若,且,求的值.(2)若,求的值.18.(1)求值:;(2)已知,,試用表示.19.已知在第一象限,若,,,求:(1)邊所在直線的方程;20.已知直線(1)求證:直線過定點(2)求過(1)的定點且垂直于直線直線方程.21.已知向量,向量分別為與向量同向的單位向量.(Ⅰ)求向量與的夾角;(Ⅱ)求向量的坐標.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用二次函數(shù)的圖象與性質得,二次函數(shù)f(x)在其對稱軸左側的圖象下降,由此得到關于a的不等關系,從而得到實數(shù)a的取值范圍【詳解】當時,,顯然適合題意,當時,,解得:,綜上:的取值范圍是故選:C【點睛】本小題主要考查函數(shù)單調性的應用、二次函數(shù)的性質、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于基礎題2、B【解析】原命題等價于恒成立,故即可,解出不等式即可.【詳解】因為命題“,使”是假命題,所以恒成立,所以,解得,故實數(shù)的取值范圍是故選:B3、B【解析】根據(jù)初相定義直接可得.【詳解】由初相定義可知,當時的相位稱為初相,所以,函數(shù)的初相為.故選:B4、C【解析】以作為基底表示出,利用平面向量基本定理,即可求出【詳解】∵分別是的中點,∴.又,∴.故選C.【點睛】本題主要考查平面向量基本定理以及向量的線性運算,意在考查學生的邏輯推理能力5、B【解析】根據(jù)充分條件和必要條件的概念,結合題意,即可得到結果.【詳解】因為,所以“”是“”的必要不充分條件.故選:B.6、C【解析】首先求平移后的解析式,再根據(jù)函數(shù)關于軸對稱,當時,,求的值.【詳解】函數(shù)的圖象沿軸向右平移個單位后的解析式是,若函數(shù)圖象關于軸對稱,當時,,解得:,當時,.故選:C【點睛】本題考查函數(shù)圖象變換,以及根據(jù)函數(shù)性質求參數(shù)的取值,意在考查基本知識,屬于基礎題型.7、C【解析】如下圖所示,三條直線平行,與異面,而與異面,與相交,故選C.8、B【解析】利用函數(shù)是偶函數(shù),可得,解出.再利用二次函數(shù)的單調性即可得出單調區(qū)間【詳解】解:函數(shù)是偶函數(shù),,,化為,對于任意實數(shù)恒成立,,解得;,利用二次函數(shù)的單調性,可得其單調遞增區(qū)間為故選:B【點睛】本題考查函數(shù)的奇偶性和對稱性的應用,熟練掌握函數(shù)的奇偶性和二次函數(shù)的單調性是解題的關鍵.9、B【解析】分析:根據(jù)向量模的性質以及向量乘法得結果.詳解:因所以選B.點睛:向量加減乘:10、B【解析】利用基本初等函數(shù)的單調性可得出合適的選項.【詳解】函數(shù)、在區(qū)間上為減函數(shù),函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上不單調.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、(1,2)【解析】分類討論得到當時符合題意,再令在[0,1]上恒成立解出a的取值范圍即可.【詳解】令,當時,為減函數(shù),為減函數(shù),不合題意;當時,為增函數(shù),為減函數(shù),符合題意,需要在[0,1]上恒成立,當時,成立,當時,恒成立,即,綜上.故答案為:(1,2).12、①②④【解析】如圖所示,取中點,則,,所以平面,從而可得,故①正確;設正方形邊長為,則,所以,又因為,所以是等邊三角形,故②正確;分別取,的中點為,,連接,,.則,且,,且,則是異面直線,所成的角在中,,,∴則是正三角形,故,③錯誤;如上圖所示,由題意可得:,則,由可得,據(jù)此可知:為二面角的平面角,說法④正確.故答案為:①②④.點睛:(1)有關折疊問題,一定要分清折疊前后兩圖形(折前的平面圖形和折疊后的空間圖形)各元素間的位置和數(shù)量關系,哪些變,哪些不變(2)研究幾何體表面上兩點的最短距離問題,常選擇恰當?shù)哪妇€或棱展開,轉化為平面上兩點間的最短距離問題13、【解析】根據(jù)所給弦長,圓心角求出所在圓的半徑,利用扇形面積公式求解.【詳解】由弦長為2,圓心角為2可知扇形所在圓的半徑,故,故答案為:14、【解析】由,根據(jù)余弦函數(shù)在的圖象可求得結果.【詳解】由得:,又,,即的定義域為.故答案為:.15、【解析】根據(jù)分段函數(shù)解析式,由內而外,逐步計算,即可得出結果.【詳解】∵,,則∴.故答案為:.16、-2020【解析】根據(jù)題意,設g(x)=f(x)+1=asinx+btanx,分析g(x)為奇函數(shù),結合函數(shù)的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,計算可得答案【詳解】根據(jù)題意,函數(shù)f(x)=asinx+btanx﹣1,設g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),則函數(shù)g(x)為奇函數(shù),則g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,則f(2)=﹣2020;故答案為-2020【點睛】本題考查函數(shù)奇偶性的性質以及應用,構造函數(shù)g(x)=f(x)+1是解題的關鍵,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)誘導公式化簡可得,結合,求解即可;(2)代入,結合誘導公式化簡可得,即,利用二倍角公式化簡可得,代入即得解【小問1詳解】由題意,若,則或【小問2詳解】若,則即,即故18、(1)(2)【解析】(1)先將小數(shù)轉化為分數(shù)并約簡,然后各式化成指數(shù)冪的形式,再利用指數(shù)運算法則即可化簡求值.(2)先利用對數(shù)的換底公式,以及相關的運算公式將轉化為以表示的式子,然后換成m,n即可.【詳解】解:(1)原式(2)原式【點睛】主要考查指數(shù)冪運算公式以及對數(shù)的運算公式的應用,屬于基礎題.19、(1);(2)或.【解析】(1)直接寫出直線方程得解;(2)求出直線的斜率即得解.小問1詳解】解:因為,,所以直線所在直線方程為.【小問2詳解】解:當點在直線上方時,由題得直線的斜率為,所以邊所在直線點斜式方程為;當點在直線下方時,由題得直線的斜率為,所以邊所在直線的點斜式方程為.綜合得直線的方程為或.20、(1)見解析;(2).【解析】⑴將直線化為,解不等式組即可得證;⑵由(1)知定點為,結合題目

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論