版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省宜昌市長陽一中2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù),若關(guān)于的不等式恰有一個整數(shù)解,則實數(shù)的最小值是A. B.C. D.2.設(shè),則與終邊相同的角的集合為A. B.C. D.3.已知函數(shù),若,則函數(shù)的單調(diào)遞減區(qū)間是A. B.C. D.4.如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,是中點,則下列敘述正確的是A.平面B.與是異面直線C.D.5.設(shè)集合,則()A. B.C.{2} D.{-2,2}6.已知函數(shù),則的值為A. B.C. D.7.不等式成立x的取值集合為()A. B.C. D.8.若關(guān)于x的方程log12x=m1-mA.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞) D.(-∞,0)∪(1,+∞)9.在去年的足球聯(lián)賽上,一隊每場比賽平均失球個數(shù)是1.5,全年比賽失球個數(shù)的標準差是1.1;二隊每場比賽平均失球個數(shù)是2.1,全年比賽失球個數(shù)的標準差是0.4.則下列說法錯誤的是()A.平均來說一隊比二隊防守技術(shù)好 B.二隊很少失球C.一隊有時表現(xiàn)差,有時表現(xiàn)又非常好 D.二隊比一隊技術(shù)水平更不穩(wěn)定10.函數(shù),的最小正周期是()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.將正方形沿對角線折成直二面角,有如下四個結(jié)論:①;②是等邊三角形;③與所成的角為,④取中點,則為二面角的平面角其中正確結(jié)論是__________.(寫出所有正確結(jié)論的序號)12.若,則的取值范圍為___________.13.①函數(shù)y=sin2x的單調(diào)增區(qū)間是[],(k∈Z);②函數(shù)y=tanx在它的定義域內(nèi)是增函數(shù);③函數(shù)y=|cos2x|的周期是π;④函數(shù)y=sin()是偶函數(shù);其中正確的是____________14.如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=AB,則下列結(jié)論正確的是_____.(填序號)①PB⊥AD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sin∠PDA15.已知關(guān)于的不等式的解集為,其中,則的最小值是___________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)數(shù)據(jù)如下表:時間51125種植成本1510.815(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.17.計算:18.已知函數(shù),其中.(1)若對任意實數(shù),恒有,求的取值范圍;(2)是否存在實數(shù),使得且?若存在,則求的取值范圍;若不存在,則加以證明.19.已知(1)若p為真命題,求實數(shù)x的取值范圍(2)若p為q成立的充分不必要條件,求實數(shù)a的取值范圍20.已知(1)求;(2)若,求.21.已知函數(shù).(1)判斷并證明函數(shù)的奇偶性;(2)判斷當時函數(shù)的單調(diào)性,并用定義證明.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】將看作整體,先求的取值范圍,再根據(jù)不等式恰有一個整點和函數(shù)的圖像,推斷參數(shù),的取值范圍【詳解】做出函數(shù)的圖像如圖實線部分所示,由,得,若,則滿足不等式,不等式至少有兩個整數(shù)解,不滿足題意,故,所以,且整數(shù)解只能是4,當時,,所以,選擇A【點睛】本題考查了分段函數(shù)的性質(zhì),一元二次不等式的解法,及整體代換思想,數(shù)形結(jié)合思想的應(yīng)用,需要根據(jù)題設(shè)條件,將數(shù)學(xué)語言轉(zhuǎn)化為圖形表達,再轉(zhuǎn)化為參數(shù)的取值范圍2、B【解析】由終邊相同的角的概念,可直接得出結(jié)果.【詳解】因為,所以與終邊相同的角為.故選B【點睛】本題主要考查終邊相同的角,熟記概念即可得出結(jié)果,屬于基礎(chǔ)題型.3、D【解析】由判斷取值范圍,再由復(fù)合函數(shù)單調(diào)性的原則求得函數(shù)的單調(diào)遞減區(qū)間【詳解】,所以,則為單調(diào)增函數(shù),又因為在上單調(diào)遞減,在上單調(diào)遞增,所以的單調(diào)減區(qū)間為,選擇D【點睛】復(fù)合函數(shù)的單調(diào)性判斷遵循“同增異減”的原則,所以需先判斷構(gòu)成復(fù)合函數(shù)的兩個函數(shù)的單調(diào)性,再判斷原函數(shù)的單調(diào)性4、D【解析】因為三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以對于A,AC與AB夾角為60°,即兩直線不垂直,所以AC不可能垂直于平面ABB1A1;故A錯誤;對于B,CC1與B1E都在平面CC1BB1中不平行,故相交;所以B錯誤;對于C,A1C1,B1E是異面直線;故C錯誤;對于D,因為幾何體是三棱柱,并且側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故選D.5、C【解析】解一元二次不等式,求出集合B,解得集合A,根據(jù)集合的交集運算求得答案.【詳解】由題意解得:,故,或,所以,故選:C6、C【解析】由,故選C7、B【解析】先求出時,不等式的解集,然后根據(jù)周期性即可得答案.【詳解】解:不等式,當時,由可得,又最小正周期為,所以不等式成立的x的取值集合為.故選:B.8、A【解析】由題意可得:函數(shù)y=log12x∴∴∴實數(shù)m的取值范圍是(0故選A點睛:本小題考查的是學(xué)生對函數(shù)最值的應(yīng)用的知識點的掌握.本題在解答時應(yīng)該先將函數(shù)y=log12x在區(qū)間(0,9、B【解析】利用平均數(shù)和標準差的定義及意義即可求解.【詳解】對于A,因為一隊每場比賽平均失球數(shù)是1.5,二隊每場比賽平均失球數(shù)是2.1,所以平均說來一隊比二隊防守技術(shù)好,故A正確;對于B,因為二隊每場比賽平均失球數(shù)是2.1,全年比賽失球個數(shù)的標準差為0.4,所以二隊經(jīng)常失球,故B錯誤;對于C,因為一隊全年比賽失球個數(shù)的標準差為1.1,二隊全年比賽失球個數(shù)的標準差為0.4,所以一隊有時表現(xiàn)很差,有時表現(xiàn)又非常好,故C正確;對于D,因為一隊全年比賽失球個數(shù)的標準差為1.1,二隊全年比賽失球個數(shù)的標準差為0.4,所以二隊比一隊技術(shù)水平更穩(wěn)定,故D正確;故選:B.10、C【解析】利用正弦型函數(shù)周期公式直接計算作答.【詳解】函數(shù)的最小正周期.故選:C二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、①②④【解析】如圖所示,取中點,則,,所以平面,從而可得,故①正確;設(shè)正方形邊長為,則,所以,又因為,所以是等邊三角形,故②正確;分別取,的中點為,,連接,,.則,且,,且,則是異面直線,所成的角在中,,,∴則是正三角形,故,③錯誤;如上圖所示,由題意可得:,則,由可得,據(jù)此可知:為二面角的平面角,說法④正確.故答案為:①②④.點睛:(1)有關(guān)折疊問題,一定要分清折疊前后兩圖形(折前的平面圖形和折疊后的空間圖形)各元素間的位置和數(shù)量關(guān)系,哪些變,哪些不變(2)研究幾何體表面上兩點的最短距離問題,常選擇恰當?shù)哪妇€或棱展開,轉(zhuǎn)化為平面上兩點間的最短距離問題12、【解析】一元二次不等式,對任意的實數(shù)都成立,與x軸最多有一個交點;由對勾函數(shù)的單調(diào)性可以求出m的范圍.【詳解】由,得.由題意可得,,即.因為,所以,故.故答案為:13、①④【解析】①由,解得.可得函數(shù)單調(diào)增區(qū)間;②函數(shù)在定義域內(nèi)不具有單調(diào)性;③由,即可得出函數(shù)的最小正周期;④利用誘導(dǎo)公式可得函數(shù),即可得出奇偶性【詳解】解:①由,解得.可知:函數(shù)的單調(diào)增區(qū)間是,,,故①正確;②函數(shù)在定義域內(nèi)不具有單調(diào)性,故②不正確;③,因此函數(shù)的最小正周期是,故③不正確;④函數(shù)是偶函數(shù),故④正確其中正確的是①④故答案為:①④【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題14、④【解析】由題意,分別根據(jù)線面位置關(guān)系的判定定理和性質(zhì)定理,逐項判定,即可得到答案.【詳解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD與AB成60°,∴①不成立,過A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正確;BC與AE是相交直線,所以BC一定不與平面PAE平行,所以③不正確;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正確;故答案為:④【點睛】本題考查線面位置關(guān)系判定與證明,考查線線角,屬于基礎(chǔ)題.熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.15、【解析】根據(jù)一元二次不等式解集的性質(zhì),結(jié)合基本不等式、對鉤函數(shù)的單調(diào)性進行求解即可.【詳解】因為關(guān)于的不等式的解集為,所以是方程的兩個不相等的實根,因此有,因為,所以,當且僅當時取等號,即時取等號,,設(shè),因為函數(shù)在上單調(diào)遞增,所以當時,函數(shù)單調(diào)遞增,所以,故答案為:三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2)該蔬菜上市150天時,該蔬菜種植成本最低為10(元/).【解析】(1)先作出散點圖,根據(jù)散點圖的分布即可判斷只有模型符合,然后將數(shù)據(jù)代入建立方程組,求出參數(shù).(2)由于模型為二次函數(shù),結(jié)合定義域,利用配方法即可求出最低種植成本以及對應(yīng)得上市時間.【詳解】解:(1)以上市時間(單位:10天)為橫坐標,以種植成本(單位/)為縱坐標,畫出散點圖(如圖).根據(jù)點的分布特征,,,這三個函數(shù)模型與表格所提供的數(shù)據(jù)不吻合,只有函數(shù)模型與表格所提供的數(shù)據(jù)吻合最好,所以選取函數(shù)模型進行描述該蔬菜種植成本與上市時間的變化關(guān)系.將表格所提供的三組數(shù)據(jù)分別代入,得解得所以,描述該蔬菜種植成本與上市時間的變化關(guān)系的函數(shù)為.(2)由(1)知,所以當時,的最小值為10,即該蔬菜上市150天時,該蔬菜種植成本最低為10(元/).【點睛】判斷模型的步驟:(1)作出散點圖;(2)根據(jù)散點圖點的分布,以及各個模型的圖像特征作出判斷;二次函數(shù)型最值問題常用方法:配方法,但要注意定義域.17、109【解析】化根式為分數(shù)指數(shù)冪,運用有理數(shù)指數(shù)冪的運算性質(zhì)化簡可求出值.【詳解】原式=()6+1=22×33+2﹣1=108+2﹣1=109【點睛】本題考查根式的概念,將根式化為分數(shù)指數(shù)冪和其運算法則的應(yīng)用,屬于基礎(chǔ)題.18、(1);(2)存在,.【解析】(1)首先求出在上的最大值,問題轉(zhuǎn)化為對任意成立,然后化簡不等式,參變分離構(gòu)造即可.(2)分a>0和a<0兩種情況討論,去掉絕對值符號,轉(zhuǎn)化為解不等式的問題.【小問1詳解】,,,∴,∴原問題對任意成立,即對任意成立,即對任意成立,∴.故a的范圍是:.【小問2詳解】①,,∵,∴,∴不等式變?yōu)?,∴?2),,∵,∴此時無解.綜上所述,存在滿足題意.19、(1)(2)【解析】(1)根據(jù)命題為真可求不等式的解.(2)根據(jù)條件關(guān)系可得對應(yīng)集合的包含關(guān)系,從而可求參數(shù)的取值范圍.【小問1詳解】因為p為真命題,故成立,故.【小問2詳解】對應(yīng)的集合為,對應(yīng)的集合為,因為p為q成立的充分不必要條件,故為的真子集,故(等號
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度電器產(chǎn)品智能控制系統(tǒng)開發(fā)與應(yīng)用合同3篇
- 二零二四年度資產(chǎn)轉(zhuǎn)讓與重組方案合同范本3篇
- 二零二五年度高端餐飲品牌加盟代理合同3篇
- 2025年度航空航天裝備制造出資擔保協(xié)議書3篇
- 個人2024年度家具定制生產(chǎn)合同
- 二零二五年度互聯(lián)網(wǎng)企業(yè)股權(quán)激勵方案合同2篇
- 二零二四年度校園食堂節(jié)能環(huán)保合同3篇
- 二零二五年度智能變壓器研發(fā)與市場推廣合同3篇
- 二零二五年度企業(yè)培訓(xùn)中心場地無償借用合同3篇
- 二零二五版出納職務(wù)擔保合同標準范本3篇
- 人工智能算法與實踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個崗位安全操作規(guī)程手冊
- 數(shù)學(xué)史簡介課件可編輯全文
- 2025年山東省濟南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運維、重保服務(wù))
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實施戰(zhàn)略知識考試題庫與答案
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計與開發(fā)標準與規(guī)范
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 有機農(nóng)業(yè)種植模式
評論
0/150
提交評論