版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳高級中學2024屆中考考前最后一卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列四張印有汽車品牌標志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.2.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°3.滿足不等式組的整數解是()A.﹣2 B.﹣1 C.0 D.14.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.25.下列計算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a26.下列計算,正確的是()A. B.C.3 D.7.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數是()A.20° B.35° C.40° D.70°8.在平面直角坐標系中,若點A(a,-b)在第一象限內,則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°10.如圖,四邊形ABCE內接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.12.化簡;÷(﹣1)=______.13.如圖,在平面直角坐標系中,拋物線y=﹣x2+4x與x軸交于點A,點M是x軸上方拋物線上一點,過點M作MP⊥x軸于點P,以MP為對角線作矩形MNPQ,連結NQ,則對角線NQ的最大值為_________.14.(題文)如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是_____.15.如圖,在3×3的正方形網格中,點A,B,C,D,E,F,G都是格點,從C,D,E,F,G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.16.今年“五一”節(jié)日期間,我市四個旅游景區(qū)共接待游客約303000多人次,這個數據用科學記數法可記為_____.三、解答題(共8題,共72分)17.(8分)計算:2tan45°-(-)o-18.(8分)在一個不透明的口袋里裝有四個球,這四個球上分別標記數字﹣3、﹣1、0、2,除數字不同外,這四個球沒有任何區(qū)別.從中任取一球,求該球上標記的數字為正數的概率;從中任取兩球,將兩球上標記的數字分別記為x、y,求點(x,y)位于第二象限的概率.19.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數關系式;(2)直接寫出當x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.20.(8分)如圖,已知:AD和BC相交于點O,∠A=∠C,AO=2,BO=4,OC=3,求OD的長.21.(8分)現有四張分別標有數字1、2、2、3的卡片,他們除數字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標數字不同的概率()A. B. C. D.22.(10分)下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據小星同學設計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據)23.(12分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.24.(問題發(fā)現)(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點:中心對稱圖形的概念.2、B【解題分析】試題分析:根據∠AOD=20°可得:∠AOC=70°,根據題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算3、C【解題分析】
先求出每個不等式的解集,再根據不等式的解集求出不等式組的解集即可.【題目詳解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式組的解集為-1<x≤0.5,∴不等式組的整數解為0,故選C.【題目點撥】本題考查了解一元一次不等式組和不等式組的整數解,能根據不等式的解集找出不等式組的解集是解此題的關鍵.4、C【解題分析】
通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【題目詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【題目點撥】本題綜合考查了菱形性質和一次函數圖象性質,解答過程中要注意函數圖象變化與動點位置之間的關系.5、B【解題分析】
利用完全平方公式及平方差公式計算即可.【題目詳解】解:A、原式=a2-6a+9,本選項錯誤;
B、原式=a2-9,本選項正確;
C、原式=a2-2ab+b2,本選項錯誤;
D、原式=a2+2ab+b2,本選項錯誤,
故選:B.【題目點撥】本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關鍵.6、B【解題分析】
根據二次根式的加減法則,以及二次根式的性質逐項判斷即可.【題目詳解】解:∵=2,∴選項A不正確;∵=2,∴選項B正確;∵3﹣=2,∴選項C不正確;∵+=3≠,∴選項D不正確.故選B.【題目點撥】本題主要考查了二次根式的加減法,以及二次根式的性質和化簡,要熟練掌握,解答此題的關鍵是要明確:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數相同的二次根式進行合并,合并方法為系數相加減,根式不變.7、B【解題分析】
先根據等腰三角形的性質以及三角形內角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【題目詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【題目點撥】本題考查了等腰三角形的兩個底角相等的性質,等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質,三角形內角和定理以及角平分線定義,求出∠ACB=70°是解題的關鍵.8、D【解題分析】
先根據第一象限內的點的坐標特征判斷出a、b的符號,進而判斷點B所在的象限即可.【題目詳解】∵點A(a,-b)在第一象限內,∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.【題目點撥】本題考查了點的坐標,解決本題的關鍵是牢記平面直角坐標系中各個象限內點的符號特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.9、C【解題分析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點:圓周角定理10、A【解題分析】
根據圓內接四邊形的任意一個外角等于它的內對角求出∠A,根據圓周角定理計算即可.【題目詳解】四邊形ABCE內接于⊙O,,由圓周角定理可得,,故選:A.【題目點撥】本題考查的知識點是圓的內接四邊形性質,解題關鍵是熟記圓內接四邊形的任意一個外角等于它的內對角(就是和它相鄰的內角的對角).二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】試題解析:∵四邊形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【題目點撥】此題考查了矩形的性質、等邊三角形的判定與性質、線段垂直平分線的性質、勾股定理;熟練掌握矩形的性質,證明三角形是等邊三角形是解決問題的關鍵.12、-【解題分析】
直接利用分式的混合運算法則即可得出.【題目詳解】原式,,,.故答案為.【題目點撥】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.13、4【解題分析】∵四邊形MNPQ是矩形,∴NQ=MP,∴當MP最大時,NQ就最大.∵點M是拋物線在軸上方部分圖象上的一點,且MP⊥軸于點P,∴當點M是拋物線的頂點時,MP的值最大.∵,∴拋物線的頂點坐標為(2,4),∴當點M的坐標為(2,4)時,MP最大=4,∴對角線NQ的最大值為4.14、12【解題分析】根據題意觀察圖象可得BC=5,點P在AC上運動時,BP⊥AC時,BP有最小值,觀察圖象可得,BP的最小值為4,即BP⊥AC時BP=4,又勾股定理求得CP=3,因點P從點C運動到點A,根據函數的對稱性可得CP=AP=3,所以ΔABC的面積是115、.【解題分析】
找出從C,D,E,F,G五個點中任意取一點組成等腰三角形的個數,再根據概率公式即可得出結論.【題目詳解】∵從C,D,E,F,G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【題目點撥】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現的結果數與所有可能出現的結果數的商是解答此題的關鍵.16、3.03×101【解題分析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于303000有6位整數,所以可以確定n=6-1=1.詳解:303000=3.03×101,故答案為:3.03×101.點睛:此題考查科學記數法表示較大的數的方法,準確確定a與n的值是解題的關鍵.三、解答題(共8題,共72分)17、2-【解題分析】
先求三角函數,再根據實數混合運算法計算.【題目詳解】解:原式=2×1-1-=1+1-=2-【題目點撥】此題重點考察學生對三角函數值的應用,掌握特殊角的三角函數值是解題的關鍵.18、(1);(2).【解題分析】
(1)直接根據概率公式求解;
(2)先利用樹狀圖展示所有12種等可能的結果數,再找出第二象限內的點的個數,然后根據概率公式計算點(x,y)位于第二象限的概率.【題目詳解】(1)正數為2,所以該球上標記的數字為正數的概率為;(2)畫樹狀圖為:共有12種等可能的結果數,它們是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的點有2個,所以點(x,y)位于第二象限的概率==.【題目點撥】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.19、(1);(2)x>1;(3)P(﹣,0)或(,0)【解題分析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數關系式;(2)依據A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.20、OD=6.【解題分析】
(1)根據有兩個角相等的三角形相似,直接列出比例式,求出OD的長,即可解決問題.【題目詳解】在△AOB與△COD中,,∴△AOB~△COD,∴,∴,∴OD=6.【題目點撥】該題主要考查了相似三角形的判定及其性質的應用問題;解題的關鍵是準確找出圖形中的對應元素,正確列出比例式;對分析問題解決問題的能力提出了一定的要求.21、A【解題分析】分析:根據題意畫出樹狀圖,從而可以得到兩次兩次抽出的卡片所標數字不同的情況及所有等可能發(fā)生的情況,進而根據概率公式求出兩次抽出的卡片所標數字不同的概率.詳解:由題意可得,兩次抽出的卡片所標數字不同的概率是:,故選:A.點睛:本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數m除以所有等可能發(fā)生的情況數n即可,即.22、(1)詳見解析;(2)(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).【解題分析】
(1)根據角平分線的尺規(guī)作圖即可得;
(2)分別根據等腰三角形的性質、三角形外角的性質和平行線的判定求解可得.【題目詳解】解:(1)如圖所示,直線AP即為所求.(2)證明:∵AB=AC,∴∠ABC=∠ACB(等邊對等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性質),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,兩直線平行),故答案為(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).【題目點撥】本題主要考查作圖能力,解題的關鍵是掌握角平分線的尺規(guī)作圖、等腰三角形的性質、三角形外角的性質和平行線的判定.23、(1)詳見解析;(1)【解題分析】
(1)連接OE交DF于點H,由切線的性質得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據∠CBE=∠DOH,從而即可得證;(1)依據圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數的定義求出OH的值,進一步求得HE的值,利用銳角三角函數的定義進一步求得EF的值.【題目詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【題目點撥】本題主要考查切線的性質及直角三角形的性質、圓周角定理及三角函數的應用,掌握圓周角定理和切線的性質是解題的關鍵.24、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解題分析】
(1)依據點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據等腰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025購銷合同書下載范文
- 2025機械(設備)租賃合同
- 二零二五年度全新托管班教學質量監(jiān)控合同3篇
- 2025年度公司設立前股東共同管理細則協議3篇
- 二零二五年度委托監(jiān)護與協議監(jiān)護生活照料安全保障全面服務合同2篇
- 二零二五年度農產品市場開拓與推廣合同3篇
- 二零二五年度加油站防火門定期檢查與快速更換服務協議3篇
- 2025年度公司與施工隊基礎設施建設項目施工合同3篇
- 2025年度保險公司與災害應急救援合作保障協議3篇
- 二零二五年度養(yǎng)殖場養(yǎng)殖技術研發(fā)用工合同3篇
- 央國企信創(chuàng)化與數字化轉型規(guī)劃實施
- 會計學原理期末測試練習題及答案
- 2024年7月國家開放大學法律事務??啤镀髽I(yè)法務》期末紙質考試試題及答案
- 《教師法》培訓課件
- 常用護理評估表及注意事項
- 河北省唐山地區(qū)2023-2024學年上學期期末八年級歷史試卷
- 專題06直線與圓的位置關系、圓與圓的位置關系(課時訓練)原卷版
- 軍用裝備信息化融合與互聯
- 人才培養(yǎng)與團隊建設計劃三篇
- 2024年急性胰腺炎急診診治專家共識解讀課件
- 六年級地方課程教案
評論
0/150
提交評論