




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年廣東省陽江市四校中考試題猜想數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學生 D.最喜歡田徑的人數(shù)占總人數(shù)的10%2.如圖的立體圖形,從左面看可能是()A. B.C. D.3.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且4.的絕對值是()A. B. C. D.5.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.6.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元7.下列函數(shù)中,當x>0時,y值隨x值增大而減小的是()A.y=x2 B.y=x﹣1 C. D.8.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.9.如圖,已知E,B,F(xiàn),C四點在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.10.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式______.12.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.13.若關于x的方程(k﹣1)x2﹣4x﹣5=0有實數(shù)根,則k的取值范圍是_____.14.如圖,某數(shù)學興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.15.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.16.小李和小林練習射箭,射完10箭后兩人的成績如圖所示,通常新手的成績不太穩(wěn)定,根據(jù)圖中的信息,估計這兩人中的新手是_____.三、解答題(共8題,共72分)17.(8分)如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內,AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結果保留根號)18.(8分)化簡:(x+7)(x-6)-(x-2)(x+1)19.(8分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.20.(8分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當?shù)拇笮M足什么條件時,四邊形是菱形?請回答并證明你的結論.21.(8分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內接正六邊形ABCDEF;(要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.22.(10分)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點B順時針旋轉角a(0°<a<90°)得到△A1BC;A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.(1)如圖1,觀察并猜想,在旋轉過程中,線段BE與BF有怎樣的數(shù)量關系?并證明你的結論.(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.(3)在(2)的條件下,求線段DE的長度.23.(12分)求不等式組的整數(shù)解.24.已知關于x的一元二次方程x2﹣6x+(2m+1)=0有實數(shù)根.求m的取值范圍;如果方程的兩個實數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項進行分析即可得.【題目詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數(shù)占總人數(shù)的=8%,故D選項錯誤,故選C.【題目點撥】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.2、A【解題分析】
根據(jù)三視圖的性質即可解題.【題目詳解】解:根據(jù)三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【題目點撥】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.3、D【解題分析】
根據(jù)二次根式和分式有意義的條件計算即可.【題目詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【題目點撥】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.4、C【解題分析】
根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【題目詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.【題目點撥】錯因分析
容易題,失分原因:未掌握絕對值的概念.5、D【解題分析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.6、A【解題分析】
設這種商品每件進價為x元,根據(jù)題中的等量關系列方程求解.【題目詳解】設這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【題目點撥】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數(shù),根據(jù)題中的等量關系列出正確的方程.7、D【解題分析】A、、∵y=x2,∴對稱軸x=0,當圖象在對稱軸右側,y隨著x的增大而增大;而在對稱軸左側,y隨著x的增大而減小,故此選項錯誤B、k>0,y隨x增大而增大,故此選項錯誤C、B、k>0,y隨x增大而增大,故此選項錯誤D、y=(x>0),反比例函數(shù),k>0,故在第一象限內y隨x的增大而減小,故此選項正確8、D【解題分析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.9、B【解題分析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【題目詳解】添加,根據(jù)AAS能證明≌,故A選項不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項符合題意;C.添加,可得,根據(jù)AAS能證明≌,故C選項不符合題意;D.添加,可得,根據(jù)AAS能證明≌,故D選項不符合題意,故選B.【題目點撥】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.10、B【解題分析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、(x+y+z)(x﹣y﹣z).【解題分析】
當被分解的式子是四項時,應考慮運用分組分解法進行分解.本題后三項可以為一組組成完全平方式,再用平方差公式即可.【題目詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).【題目點撥】本題考查了用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題后三項可組成完全平方公式,可把后三項分為一組.12、1【解題分析】原方程為3x2?6x+1=0,二次項系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.13、【解題分析】當k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.14、25【解題分析】試題解析:由題意15、﹣2【解題分析】
連結AE,如圖1,先根據(jù)等腰直角三角形的性質得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【題目詳解】連結AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【題目點撥】此題考查等腰直角三角形的性質,圓周角定理,勾股定理,解題關鍵在于結合實際運用圓的相關性質.16、小李.【解題分析】
解:根據(jù)圖中的信息找出波動性大的即可:根據(jù)圖中的信息可知,小李的成績波動性大,則這兩人中的新手是小李.故答案為:小李.三、解答題(共8題,共72分)17、3+3.5【解題分析】
延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【題目詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應用﹣仰角俯角問題;2、解直角三角形的應用﹣坡度坡角問題18、2x-40.【解題分析】
原式利用多項式乘以多項式法則計算,去括號合并即可.【題目詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.19、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解題分析】
(1)根據(jù)平行得出∠DAM=∠NCM,根據(jù)ASA推出△AMD≌△CMN,得出AD=CN,推出四邊形ADCN是平行四邊形即可;(2)根據(jù)∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根據(jù)矩形的判定得出即可.【題目詳解】證明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四邊形ADCN是平行四邊形,∴CD=AN;(2)解:四邊形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四邊形ADCN是平行四邊形,∴MD=MN=MA=MC,∴AC=DN,∴四邊形ADCN是矩形.【題目點撥】本題考查了全等三角形的性質和判定,平行四邊形的判定和性質,矩形的判定的應用,能綜合運用性質進行推理是解此題的關鍵,綜合性比較強,難度適中.20、(1)見解析;(2)見解析【解題分析】
(1)求出EF∥AC,根據(jù)EF=AC,利用平行四邊形的判定推出四邊形ACEF是平行四邊形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根據(jù)菱形的判定推出即可.【題目詳解】(1)證明:∵∠ACB=90°,DE是BC的垂直平分線,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四邊形ACEF是平行四邊形,∴AF=CE;(2)當∠B=30°時,四邊形ACEF是菱形,證明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分線,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四邊形ACEF是平行四邊形,∴四邊形ACEF是菱形,即當∠B=30°時,四邊形ACEF是菱形.【題目點撥】本題考查了菱形的判定平行四邊形的判定線段垂直平分線,含30度角的直角三角形性質,直角三角形斜邊上中線性質等知識點的應用綜合性比較強,有一定的難度.21、(1)答案見解析;(2)證明見解析.【解題分析】
(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【題目詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【題目點撥】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質.22、(1)(2)四邊形是菱形.(3)【解題分析】
(1)根據(jù)等邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2234-2025低頻電場測量儀校準規(guī)范
- 湖南省永州市祁陽市茅竹鎮(zhèn)中心學校2024-2025學年下學期期中監(jiān)測八年級下冊《物理》試卷(含答案)
- 武昌工學院《攝影技術》2023-2024學年第二學期期末試卷
- 深圳技術大學《基本體操(1)》2023-2024學年第二學期期末試卷
- 萊蕪市重點中學2024-2025學年高三第四次聯(lián)考生物試題含解析
- 江蘇省鹽都區(qū)2025年初三期末熱身聯(lián)考生物試題含解析
- 蘇州托普信息職業(yè)技術學院《三維影像設計》2023-2024學年第二學期期末試卷
- 江漢藝術職業(yè)學院《小組社會工作》2023-2024學年第二學期期末試卷
- 湖北省孝感市漢川市2025屆小學六年級數(shù)學畢業(yè)檢測指導卷含解析
- 重慶科技職業(yè)學院《中醫(yī)診斷學(實驗)》2023-2024學年第一學期期末試卷
- 生活垃圾焚燒發(fā)電廠項目施工組織設計
- GB/T 15072.2-2008貴金屬合金化學分析方法銀合金中銀量的測定氯化鈉電位滴定法
- GB/T 10607-2001空氣分離設備產品型號編制方法
- 交警道路交通安全執(zhí)法規(guī)范化-課件
- 電焊工基礎知識培訓-課件
- 園林工程建設概述課件
- 《鋼鐵是怎樣煉成的》知識競賽課件講義
- 高考寫作指導:作文訓練之語言的提升
- 幼兒園大班數(shù)學:《層級分類》 課件
- 工程(產品)交付后顧客滿意度調查表
- 項目定標審批表
評論
0/150
提交評論