




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年云南省牟定縣茅陽中學中考數(shù)學考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知a<1,點A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數(shù)圖象上的三點,則下列結論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x12.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.3.用教材中的計算器依次按鍵如下,顯示的結果在數(shù)軸上對應點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B4.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是()A. B. C. D.5.下列運算正確的是()A.x2?x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b26.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限7.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數(shù)法表示這個數(shù)是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1068.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數(shù)法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1059.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形10.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解=______.12.圖中圓心角∠AOB=30°,弦CA∥OB,延長CO與圓交于點D,則∠BOD=.13.如圖,直線與x軸、y軸分別交于點A、B;點Q是以C(0,﹣1)為圓心、1為半徑的圓上一動點,過Q點的切線交線段AB于點P,則線段PQ的最小是______.14.若式子有意義,則實數(shù)x的取值范圍是_______.15.如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數(shù)的圖象經過點B,則k的值是_____.16.因式分解:4ax2﹣4ay2=_____.三、解答題(共8題,共72分)17.(8分)如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數(shù).小明發(fā)現(xiàn)OE平分∠BOC,請你通過計算說明道理.18.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.(1)試說明DF是⊙O的切線;(2)若AC=3AE,求tanC.19.(8分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系.請根據(jù)圖象解答下列問題:當轎車剛到乙地時,此時貨車距離乙地千米;當轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.20.(8分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).21.(8分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請?zhí)羁胀瓿上铝凶C明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.22.(10分)小明對,,,四個中小型超市的女工人數(shù)進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計表超市女工人數(shù)占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現(xiàn)在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.23.(12分)小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.24.如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
根據(jù)的圖象上的三點,把三點代入可以得到x1=﹣,x1=,x3=,在根據(jù)a的大小即可解題【題目詳解】解:∵點A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數(shù)圖象上的三點,∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【題目點撥】此題主要考查一次函數(shù)圖象與系數(shù)的關系,解題關鍵在于把三點代入,在根據(jù)a的大小來判斷2、B【解題分析】
陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【題目詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【題目點撥】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.3、A【解題分析】試題分析:在計算器上依次按鍵轉化為算式為﹣=-1.414…;計算可得結果介于﹣2與﹣1之間.故選A.考點:1、計算器—數(shù)的開方;2、實數(shù)與數(shù)軸4、B【解題分析】試題解析:如圖所示:設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=;故選B.【題目點撥】本題考查了解直角三角形、含30°角的直角三角形的性質、等腰三角形的性質、三角函數(shù)等,通過作輔助線求出AM是解決問題的關鍵.5、C【解題分析】
根據(jù)同底數(shù)冪的法則、合并同類項的法則、積的乘方法則、完全平方公式逐一進行計算即可.【題目詳解】A、x2?x3=x5,故A選項錯誤;B、x2+x2=2x2,故B選項錯誤;C、(﹣2x)2=4x2,故C選項正確;D、(a+b)2=a2+2ab+b2,故D選項錯誤,故選C.【題目點撥】本題考查了同底數(shù)冪的乘法、合并同類項、積的乘方以及完全平方公式,熟練掌握各運算的運算法則是解題的關鍵6、A【解題分析】
由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關系,即可得出一次函數(shù)y=mx+n的圖象經過第一、二、三象限.【題目詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經過第一、二、三象限.故選A.【題目點撥】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.7、C【解題分析】解:,故選C.8、B【解題分析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】55000是5位整數(shù),小數(shù)點向左移動4位后所得的數(shù)即可滿足科學記數(shù)法的要求,由此可知10的指數(shù)為4,所以,55000用科學記數(shù)法表示為5.5×104,故選B.【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、D【解題分析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯誤;
B、四條邊相等的四邊形是菱形,故錯誤;
C、對角線相互平分的四邊形是平行四邊形,故錯誤;
D、對角線相等且相互平分的四邊形是矩形,正確;
故選D.點睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關鍵是熟記四邊形的判定定理.10、D【解題分析】
根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【題目詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解題分析】解:==,故答案為:.12、30°【解題分析】試題分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所對的圓周角和圓心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.13、【解題分析】解:過點C作CP⊥直線AB于點P,過點P作⊙C的切線PQ,切點為Q,此時PQ最小,連接CQ,如圖所示.當x=0時,y=3,∴點B的坐標為(0,3);當y=0時,x=4,∴點A的坐標為(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC?sinB=.∵PQ為⊙C的切線,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案為.14、x≤2且x≠1【解題分析】
根據(jù)被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【題目詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【題目點撥】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負數(shù).15、.【解題分析】
已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據(jù)勾股定理還可求出BC的長度,進而確定點B的坐標;將點B的坐標代入反比例函數(shù)的解析式中,即可求出k的值.【題目詳解】過點B作BC垂直O(jiān)A于C,∵點A的坐標是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標是把代入,得故答案為.【題目點撥】考查待定系數(shù)法確定反比例函數(shù)的解析式,只需求出反比例函數(shù)圖象上一點的坐標;16、4a(x﹣y)(x+y)【解題分析】
首先提取公因式4a,再利用平方差公式分解因式即可.【題目詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【題目點撥】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.三、解答題(共8題,共72分)17、(1)答案見解析(2)155°(3)答案見解析【解題分析】
(1)根據(jù)角的定義即可解決;(2)根據(jù)∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補角的定義求得∠DOC和∠BOC即可;(3)根據(jù)∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分別求得∠COE與∠BOE的度數(shù)即可說明.【題目詳解】(1)圖中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因為∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因為∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因為∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【題目點撥】本題考查了角的度數(shù)的計算,正確理解角平分線的定義,以及鄰補角的定義是解題的關鍵.18、(1)詳見解析;(2)【解題分析】
(1)連接OD,根據(jù)等邊對等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【題目詳解】(1)連接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切線;(2)連接BE,∵AB是直徑,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.19、(1)30;(2)當x=3.9時,轎車與貨車相遇;(3)在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【解題分析】
(1)根據(jù)圖象可知貨車5小時行駛300千米,由此求出貨車的速度為60千米/時,再根據(jù)圖象得出貨車出發(fā)后4.5小時轎車到達乙地,由此求出轎車到達乙地時,貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對應的函數(shù)關系式,再根據(jù)兩直線的交點即可解答;(3)分兩種情形列出方程即可解決問題.【題目詳解】解:(1)根據(jù)圖象信息:貨車的速度V貨=,∵轎車到達乙地的時間為貨車出發(fā)后4.5小時,∴轎車到達乙地時,貨車行駛的路程為:4.5×60=270(千米),此時,貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達乙地后,貨車距乙地30千米.故答案為30;(2)設CD段函數(shù)解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數(shù)解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當x=3.9時,轎車與貨車相遇;(3)當x=2.5時,y貨=150,兩車相距=150﹣80=70>20,由題意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小時.答:在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【題目點撥】本題考查了一次函數(shù)的應用,對一次函數(shù)圖象的意義的理解,待定系數(shù)法求一次函數(shù)的解析式的運用,行程問題中路程=速度×時間的運用,本題有一定難度,其中求出貨車與轎車的速度是解題的關鍵.20、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解題分析】
如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.21、直角三角形斜邊上的中線等于斜邊的一半;1.【解題分析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質填空即可.【題目詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【題目點撥】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,等邊三角形的判定與性質,重點在于邏輯思維能力的訓練.22、(1)32(人),25(人);(2);(3)乙同學,見解析.【解題分析】
(1)用A超市有女工人數(shù)除以女工人數(shù)占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數(shù),進一步得到四個中小型超市的女工人數(shù)比,從而求得B超市有女工多少人;
(2)先求出C超市有女工人數(shù),進一步得到四個中小型超市共有女工人數(shù),再根據(jù)概率的定義即可求解;
(3)先求出D超市有女工人數(shù)、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數(shù)、共有員工多少人,再根據(jù)概率的定義即可求解.【題目詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數(shù)的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- UX 設計師崗位面試問題及答案
- 2025屆河北省秦皇島市一中高二下化學期末教學質量檢測試題含解析
- 2025屆天津市靜海區(qū)獨流中學化學高二下期末調研試題含解析
- 村鎮(zhèn)園林項目管理辦法
- 華為運動啟動管理辦法
- 華潤燃氣績效管理辦法
- 農村代理記賬管理辦法
- 公共綠化區(qū)域管理辦法
- 檢察檔案保密管理辦法
- 多功能復合創(chuàng)可貼-洞察及研究
- 地下車庫鋼筋方案
- (2023)醫(yī)院收費員考試題庫及答案
- GB/T 14454.4-2008香料折光指數(shù)的測定
- 2023年三臺縣梓豐現(xiàn)代農業(yè)發(fā)展有限公司招聘筆試題庫及答案解析
- 員工質量意識的培訓課件
- 珊瑚海水鹽標準
- 柴油機電站操作員(技師)理論考試題庫及答案
- 天津英華插班生考試卷五年級
- 消防水池 (有限空間)作業(yè)安全告知牌及警示標志
- DB33∕642-2019 熱電聯(lián)產能效、能耗限額及計算方法
- 考試錄用公務員筆試監(jiān)考工作培訓
評論
0/150
提交評論