2023-2024學年甘肅省天水市第三中學數(shù)學高三第一學期期末達標檢測試題含解析_第1頁
2023-2024學年甘肅省天水市第三中學數(shù)學高三第一學期期末達標檢測試題含解析_第2頁
2023-2024學年甘肅省天水市第三中學數(shù)學高三第一學期期末達標檢測試題含解析_第3頁
2023-2024學年甘肅省天水市第三中學數(shù)學高三第一學期期末達標檢測試題含解析_第4頁
2023-2024學年甘肅省天水市第三中學數(shù)學高三第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省天水市第三中學數(shù)學高三第一學期期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內部的一些虛線構成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關2.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1003.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.4.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或5.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結論正確的是()A. B. C. D.6.在三棱錐中,,且分別是棱,的中點,下面四個結論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④7.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.8.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,9.已知向量,且,則m=()A.?8 B.?6C.6 D.810.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.11.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-12.已知各項都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個零點,則的取值范圍是__________.14.如圖,、分別是雙曲線的左、右焦點,過的直線與雙曲線的兩條漸近線分別交于、兩點,若,,則雙曲線的離心率是______.15.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.16.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團活動),排課要求為:語文、數(shù)學、外語、物理、化學各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.18.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.19.(12分)已知是公比為的無窮等比數(shù)列,其前項和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補充在上面問題中并作答.20.(12分)某工廠生產某種電子產品,每件產品不合格的概率均為,現(xiàn)工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數(shù).21.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.22.(10分)已知橢圓的短軸長為,左右焦點分別為,,點是橢圓上位于第一象限的任一點,且當時,.(1)求橢圓的標準方程;(2)若橢圓上點與點關于原點對稱,過點作垂直于軸,垂足為,連接并延長交于另一點,交軸于點.(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.2、B【解析】

根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.3、A【解析】

根據(jù)實數(shù)滿足的等量關系,代入后將方程變形,構造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數(shù)在求函數(shù)最值中的應用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.4、A【解析】

利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.5、D【解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,,,,0,,,1,,,,,,,設平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.6、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.7、B【解析】

根據(jù)拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據(jù)拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質的簡單應用,圓的幾何性質應用,屬于中檔題.8、B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.9、D【解析】

由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.10、A【解析】

由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.11、C【解析】

直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.12、A【解析】試題分析:設公差為或(舍),故選A.考點:等差數(shù)列及其性質.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結合圖象可知,<b<2,故答案為.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內到外依次求值.(2)當給出函數(shù)值求自變量的值時,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.14、【解析】

根據(jù)三角形中位線證得,結合判斷出垂直平分,由此求得的值,結合求得的值.【詳解】∵,∴為中點,,∵,∴垂直平分,∴,即,∴,,即.故答案為:【點睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉化的數(shù)學思想方法,屬于基礎題.15、【解析】

取的中點,設等邊三角形的中心為,連接.根據(jù)等邊三角形的性質可求得,,由等腰直角三角形的性質,得,根據(jù)面面垂直的性質得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據(jù)球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關鍵在于根據(jù)三棱錐的面的關系、棱的關系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.16、1344【解析】

分四種情況討論即可【詳解】解:數(shù)學排在第一節(jié)時有:數(shù)學排在第二節(jié)時有:數(shù)學排在第三節(jié)時有:數(shù)學排在第四節(jié)時有:所以共有1344種故答案為:1344【點睛】考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數(shù)列是首項為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)由已知線面垂直得,結合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據(jù)題設知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設平面的一個法向量,則令,則.因為平面,所以為平面的一個法向量,且所以,.所以二面角的正弦值為.【點睛】本題考查線面垂直的判定定理和性質定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標系,用空間向量法求空間角,這樣可減少思維量,把問題轉化為計算.19、見解析【解析】

選擇①或②或③,求出的值,然后利用等比數(shù)列的求和公式可得出關于的不等式,判斷不等式是否存在符合條件的正整數(shù)解,在有解的情況下,解出不等式,進而可得出結論.【詳解】選擇①:因為,所以,所以.令,即,,所以使得的正整數(shù)的最小值為;選擇②:因為,所以,.因為,所以不存在滿足條件的正整數(shù);選擇③:因為,所以,所以.令,即,整理得.當為偶數(shù)時,原不等式無解;當為奇數(shù)時,原不等式等價于,所以使得的正整數(shù)的最小值為.【點睛】本題考查了等比數(shù)列的通項公式求和公式,考查了推理能力與計算能力,屬于中檔題.20、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數(shù)學期望,考查了分析問題、解決問題的能力,屬于中檔題.21、(1)證明見解析;(2)【解析】

(1)取AB的中點O,連接,證得,從而證得C′O⊥平面ABD,再結合面面垂直的判定定理,即可證得平面⊥平面;(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論