浙江省杭州市桐廬縣達標名校2024屆中考數(shù)學考前最后一卷含解析_第1頁
浙江省杭州市桐廬縣達標名校2024屆中考數(shù)學考前最后一卷含解析_第2頁
浙江省杭州市桐廬縣達標名校2024屆中考數(shù)學考前最后一卷含解析_第3頁
浙江省杭州市桐廬縣達標名校2024屆中考數(shù)學考前最后一卷含解析_第4頁
浙江省杭州市桐廬縣達標名校2024屆中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省杭州市桐廬縣達標名校2024年中考數(shù)學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側(cè)面積為()A. B.π C.50 D.50π2.在,0,-1,這四個數(shù)中,最小的數(shù)是()A. B.0 C. D.-13.估算的值在(

)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間4.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關(guān)系是()A.點A在⊙O內(nèi) B.點A在⊙O上 C.點A在⊙O外 D.內(nèi)含5.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.36.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°7.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對8.為了盡早適應(yīng)中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個9.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數(shù)為()A.76° B.74° C.72° D.70°10.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,D,E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.12.已知∠=32°,則∠的余角是_____°.13.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.14.如圖,AB∥CD,點E是CD上一點,∠AEC=40°,EF平分∠AED交AB于點F,則∠AFE=___度.15.若a,b互為相反數(shù),則a2﹣b2=_____.16.如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn.當n≥2時,Sn﹣Sn﹣1=▲.17.關(guān)于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是.三、解答題(共7小題,滿分69分)18.(10分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):).19.(5分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側(cè)),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設(shè)點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.20.(8分)趙亮同學想利用影長測量學校旗桿的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測得其長度為9.6米和2米,則學校旗桿的高度為________米.21.(10分)反比例函數(shù)y=(k≠0)與一次函數(shù)y=mx+b(m≠0)交于點A(1,2k﹣1).求反比例函數(shù)的解析式;若一次函數(shù)與x軸交于點B,且△AOB的面積為3,求一次函數(shù)的解析式.22.(10分)如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.(1)求∠BCD的度數(shù).(2)求教學樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)23.(12分)均衡化驗收以來,樂陵每個學校都高樓林立,校園環(huán)境美如畫,軟件、硬件等設(shè)施齊全,小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走6米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°,已如A點離地面的高度AB=4米,∠BCA=30°,且B、C、D三點在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.24.(14分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】

根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【題目詳解】解:圓錐的側(cè)面積=?5?5=.故選A.【題目點撥】本題考查圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.2、D【解題分析】試題分析:因為負數(shù)小于0,正數(shù)大于0,正數(shù)大于負數(shù),所以在,0,-1,這四個數(shù)中,最小的數(shù)是-1,故選D.考點:正負數(shù)的大小比較.3、C【解題分析】

由可知56,即可解出.【題目詳解】∵∴56,故選C.【題目點撥】此題主要考查了無理數(shù)的估算,掌握無理數(shù)的估算是解題的關(guān)鍵.4、A【解題分析】

直接利用點與圓的位置關(guān)系進而得出答案.【題目詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.【題目點撥】此題主要考查了點與圓的位置關(guān)系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內(nèi)?d<r是解題關(guān)鍵.5、C【解題分析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【題目詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【題目點撥】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.6、B【解題分析】

根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【題目詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【題目點撥】本題考查了圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).7、B【解題分析】

解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.8、B【解題分析】

根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【題目詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【題目點撥】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關(guān)鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).9、B【解題分析】

直接利用三角形內(nèi)角和定理得出∠ABC的度數(shù),再利用翻折變換的性質(zhì)得出∠BDE的度數(shù).【題目詳解】解:∵∠A=56°,∠C=88°,

∴∠ABC=180°-56°-88°=36°,

∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,

∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,

∴∠BDE=180°-18°-88°=74°.

故選:B.【題目點撥】此題主要考查了三角形內(nèi)角和定理,正確掌握三角形內(nèi)角和定理是解題關(guān)鍵.10、D【解題分析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1:3【解題分析】根據(jù)相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據(jù)相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據(jù)同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.12、58°【解題分析】

根據(jù)余角:如果兩個角的和等于90°(直角),就說這兩個角互為余角.即其中一個角是另一個角的余角可得答案.【題目詳解】解:∠α的余角是:90°-32°=58°.故答案為58°.【題目點撥】本題考查余角,解題關(guān)鍵是掌握互為余角的兩個角的和為90度.13、1【解題分析】

先根據(jù)根的判別式求出c的取值范圍,然后在范圍內(nèi)隨便取一個值即可.【題目詳解】解得所以可以取故答案為:1.【題目點撥】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關(guān)系是解題的關(guān)鍵.14、70°.【解題分析】

由平角求出∠AED的度數(shù),由角平分線得出∠DEF的度數(shù),再由平行線的性質(zhì)即可求出∠AFE的度數(shù).【題目詳解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案為:70【題目點撥】本題考查的是平行線的性質(zhì)以及角平分線的定義.熟練掌握平行線的性質(zhì),求出∠DEF的度數(shù)是解決問題的關(guān)鍵.15、1【解題分析】【分析】直接利用平方差公式分解因式進而結(jié)合相反數(shù)的定義分析得出答案.【題目詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【題目點撥】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關(guān)鍵.16、【解題分析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當AB=n時,△AME的面積為,當AB=n-1時,△AME的面積為.∴當n≥2時,17、k<1且k≠1【解題分析】試題分析:根據(jù)一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.解:∵關(guān)于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數(shù)根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故答案為k<1且k≠1.考點:根的判別式;一元二次方程的定義.三、解答題(共7小題,滿分69分)18、5.7米.【解題分析】試題分析:由題意,過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.試題解析:解:如答圖,過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH?tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉線CE的長約為5.7米.考點:1.解直角三角形的應(yīng)用(仰角俯角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.矩形的判定和性質(zhì).19、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解題分析】

(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側(cè),根據(jù)二次函數(shù)圖象的性質(zhì)可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結(jié)合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界)時h的取值范圍.(3)設(shè)P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【題目詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設(shè)原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設(shè)P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【題目點撥】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質(zhì)、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質(zhì)等知識點.解(1)的關(guān)鍵是掌握待定系數(shù)法,解(2)的關(guān)鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關(guān)鍵是證明△BNP≌△PMQ.20、10【解題分析】試題分析:根據(jù)相似的性質(zhì)可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點:相似的應(yīng)用21、(1)y=;(2)y=﹣或y=【解題分析】試題分析:(1)把A(1,2k-1)代入y=即可求得結(jié)果;

(2)根據(jù)三角形的面積等于3,求得點B的坐標,代入一次函數(shù)y=mx+b即可得到結(jié)果.試題解析:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函數(shù)的解析式為:y=;(2)由(1)得k=1,∴A(1,1),設(shè)B(a,0),∴S△AOB=?|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=﹣.所以符合條件的一次函數(shù)解析式為:y=﹣或y=x+.22、(1)38°;(2)20.4m.【解題分析】

(1)過點C作CE與BD垂直,根據(jù)題意確定出所求角度數(shù)即可;(2)在直角三角形CBE中,利用銳角三角函數(shù)定義求出BE的長,在直角三角形CDE中,利用銳角三角函數(shù)定義求出DE的長,由BE+DE求出BD的長,即為教學樓的高.【題目詳解】(1)過點C作CE⊥BD,則有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由題意得:CE=AB=30m,在Rt△CBE中,BE=CE?tan20°≈10.80m,在Rt△CDE中,DE=CD?tan18°≈9.60m,∴教學樓的高BD=BE+DE=10.80+9.60≈20.4m,則教學樓的高約為20.4m.【題目點撥】本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題,正確添加輔助線構(gòu)建直角三角形、熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.23、(1)12米;(2)(2+8)米【解題分析】

(1)設(shè)DE=x,先證明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根據(jù)EF=8求出x的值得到答案;(2)延長NM交DB延長線于點P,先分別求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【題目詳解】(1)如圖,設(shè)DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論