浙江省嘉興市桐鄉(xiāng)重點名校2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第1頁
浙江省嘉興市桐鄉(xiāng)重點名校2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第2頁
浙江省嘉興市桐鄉(xiāng)重點名校2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第3頁
浙江省嘉興市桐鄉(xiāng)重點名校2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第4頁
浙江省嘉興市桐鄉(xiāng)重點名校2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省嘉興市桐鄉(xiāng)重點名校2024年中考數(shù)學最后沖刺濃縮精華卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點E,則的長為()A. B. C. D.2.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.143.小紅上學要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.4.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數(shù)為A.1 B.2 C.3 D.45.的倒數(shù)是()A. B.3 C. D.6.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差7.把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有1個三角形,第②個圖案中有4個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為()A.15 B.17 C.19 D.248.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.9.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.10.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.12.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯(lián)結(jié)PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.13.若點(a,b)在一次函數(shù)y=2x-3的圖象上,則代數(shù)式4a-2b-3的值是__________14.若實數(shù)a、b、c在數(shù)軸上對應(yīng)點的位置如圖,則化簡:2|a+c|++3|a﹣b|=_____.15.關(guān)于x的不等式組的整數(shù)解共有3個,則a的取值范圍是_____.16.某中學數(shù)學教研組有25名教師,將他們分成三組,在38~45(歲)組內(nèi)有8名教師,那么這個小組的頻率是_______。17.在日本核電站事故期間,我國某監(jiān)測點監(jiān)測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.數(shù)據(jù)“0.0000872”用科學記數(shù)法可表示為________.三、解答題(共7小題,滿分69分)18.(10分)某街道需要鋪設(shè)管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關(guān)系圖象.(1)直接寫出點的坐標;(2)求線段所對應(yīng)的函數(shù)解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.19.(5分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.20.(8分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標.21.(10分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.22.(10分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個比一個?。僮鞑襟E作法由操作步驟推斷(僅選取部分結(jié)論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據(jù)是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構(gòu)造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構(gòu)造第三個正方形CHIJ這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).23.(12分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設(shè)點P的運動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.24.(14分)學校決定在學生中開設(shè):A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:(1)在這項調(diào)查中,共調(diào)查了多少名學生?(2)請計算本項調(diào)查中喜歡“立定跳遠”的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整.(3)若調(diào)查到喜歡“跳繩”的5名學生中有2名男生,3名女生,現(xiàn)從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表法求出剛好抽到不同性別學生的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

連接OE,由菱形的性質(zhì)得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【題目詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【題目點撥】本題考查弧長公式、菱形的性質(zhì)、等腰三角形的性質(zhì)等知識;熟練掌握菱形的性質(zhì),求出∠DOE的度數(shù)是解決問題的關(guān)鍵.2、B【解題分析】試題分析:根據(jù)平行四邊形的性質(zhì)可知AB=CD,AD∥BC,AD=BC,然后根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質(zhì)和等腰三角形的性質(zhì),解題關(guān)鍵是把所求線段轉(zhuǎn)化為題目中已知的線段,根據(jù)等量代換可求解.3、C【解題分析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【題目詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.4、B【解題分析】分析:∵函數(shù)y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤。∵當x=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?<x<3時,二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結(jié)論有③④兩個,故選B。5、A【解題分析】

解:的倒數(shù)是.故選A.【題目點撥】本題考查倒數(shù),掌握概念正確計算是解題關(guān)鍵.6、A【解題分析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【題目詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【題目點撥】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關(guān)鍵.7、D【解題分析】

由圖可知:第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,第④個圖案有三角形1+3+4+4=12,…第n個圖案有三角形4(n﹣1)個(n>1時),由此得出規(guī)律解決問題.【題目詳解】解:解:∵第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,…∴第n個圖案有三角形4(n﹣1)個(n>1時),則第⑦個圖中三角形的個數(shù)是4×(7﹣1)=24個,故選D.【題目點撥】本題考查了規(guī)律型:圖形的變化類,根據(jù)給定圖形中三角形的個數(shù),找出an=4(n﹣1)是解題的關(guān)鍵.8、D【解題分析】

先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【題目詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【題目點撥】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.9、B【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.10、C【解題分析】

先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【題目詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【題目點撥】本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

過點B作BD⊥AC于D,設(shè)AH=BC=2x,根據(jù)等腰三角形三線合一的性質(zhì)可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據(jù)三角形的面積列方程求出BD,然后根據(jù)銳角的正弦=對邊:斜邊求解即可.【題目詳解】如圖,過點B作BD⊥AC于D,設(shè)AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據(jù)勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.12、2【解題分析】

由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【題目詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【題目點撥】本題考查的知識點是圓的性質(zhì),解題的關(guān)鍵是熟練的掌握圓的性質(zhì).13、1【解題分析】

根據(jù)題意,將點(a,b)代入函數(shù)解析式即可求得2a-b的值,變形即可求得所求式子的值.【題目詳解】∵點(a,b)在一次函數(shù)y=2x-1的圖象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案為:1.【題目點撥】本題考查一次函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.14、﹣5a+4b﹣3c.【解題分析】

直接利用數(shù)軸結(jié)合二次根式、絕對值的性質(zhì)化簡得出答案.【題目詳解】由數(shù)軸可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案為-5a+4b-3c.【題目點撥】此題主要考查了二次根式以及絕對值的性質(zhì),正確化簡是解題關(guān)鍵.15、【解題分析】

首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出a的范圍.【題目詳解】解:由不等式①得:x>a,由不等式②得:x<1,所以不等式組的解集是a<x<1.∵關(guān)于x的不等式組的整數(shù)解共有3個,∴3個整數(shù)解為0,﹣1,﹣2,∴a的取值范圍是﹣3≤a<﹣2.故答案為:﹣3≤a<﹣2.【題目點撥】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.16、0.1【解題分析】

根據(jù)頻率的求法:頻率=,即可求解.【題目詳解】解:根據(jù)題意,38-45歲組內(nèi)的教師有8名,

即頻數(shù)為8,而總數(shù)為25;

故這個小組的頻率是為=0.1;

故答案為0.1.【題目點撥】本題考查頻率、頻數(shù)的關(guān)系,屬于基礎(chǔ)題,關(guān)鍵是掌握頻率的求法:頻率=.17、【解題分析】

科學記數(shù)法的表示形式為ax10n的形式,其中1≤lal<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】解:0.0000872=故答案為:【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、(1)(10,7500)(2)直線BC的解析式為y=-250x+10000,自變量x的取值范圍為10≤x≤40.(3)1250米.【解題分析】

(1)由于前面10天由甲單獨完成,用總的長度減去已完成的長度即為剩余的長度,從而求出點B的坐標;(2)利用待定系數(shù)法求解即可;(3)已隊工作25天后,即甲隊工作了35天,故當x=35時,函數(shù)值即為所求.【題目詳解】(1)9000-150×10=7500.∴點B的坐標為(10,7500)(2)設(shè)直線BC的解析式為y=kx+b,依題意,得:解得:∴直線BC的解析式為y=-250x+10000,∵乙隊是10天之后加入,40天完成,∴自變量x的取值范圍為10≤x≤40.(3)依題意,當x=35時,y=-250×35+10000=1250.∴乙隊工作25天后剩余管線的長度是1250米.【題目點撥】本題考查了一次函數(shù)的應(yīng)用,理解題意觀察圖象得到有用信息是解題的關(guān)鍵.19、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解題分析】

(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結(jié)論;

②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結(jié)論;

(2)先確定出B(1,),D(1,),進而求出點P的坐標,再求出A,C坐標,最后用AC=BD,即可得出結(jié)論.【題目詳解】(1)①如圖1,,反比例函數(shù)為,當時,,,當時,,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點是線段的中點,,當時,由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當四邊形是正方形,記,的交點為,,當時,,,,,,,,,,.【題目點撥】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解題分析】

(1)把點A的坐標代入拋物線的解析式,就可求得拋物線的解析式,根據(jù)A,C兩點的坐標,可求得直線AC的函數(shù)解析式;(1)先過點D作DH⊥x軸于點H,運用割補法即可得到:四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,據(jù)此列式計算化簡就可求得S關(guān)于m的函數(shù)關(guān)系;(3)由于AC確定,可分AC是平行四邊形的邊和對角線兩種情況討論,得到點E與點C的縱坐標之間的關(guān)系,然后代入拋物線的解析式,就可得到滿足條件的所有點E的坐標.【題目詳解】(1)∵A(﹣4,0)在二次函數(shù)y=ax1﹣x+1(a≠0)的圖象上,∴0=16a+6+1,解得a=﹣,∴拋物線的函數(shù)解析式為y=﹣x1﹣x+1;∴點C的坐標為(0,1),設(shè)直線AC的解析式為y=kx+b,則,解得,∴直線AC的函數(shù)解析式為:;(1)∵點D(m,n)是拋物線在第二象限的部分上的一動點,∴D(m,﹣m1﹣m+1),過點D作DH⊥x軸于點H,則DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化簡,得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC為平行四邊形的一邊,則C、E到AF的距離相等,∴|yE|=|yC|=1,∴yE=±1.當yE=1時,解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴點E的坐標為(﹣3,1);當yE=﹣1時,解方程﹣x1﹣x+1=﹣1得,x1=,x1=,∴點E的坐標為(,﹣1)或(,﹣1);②若AC為平行四邊形的一條對角線,則CE∥AF,∴yE=yC=1,∴點E的坐標為(﹣3,1).綜上所述,滿足條件的點E的坐標為(﹣3,1)、(,﹣1)、(,﹣1).21、1-【解題分析】

利用零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負指數(shù)次冪的性質(zhì)進行計算即可.【題目詳解】解:原式=.【題目點撥】本題考查了零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負指數(shù)次冪的性質(zhì),熟練掌握性質(zhì)及定義是解題的關(guān)鍵.22、(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)見解析.【解題分析】

(1)①由題意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由題意得AB=AE=a1,AC=a1,則CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,F(xiàn)H=EF=a2,則CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根據(jù)題意畫圖即可.【題目詳解】解:(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等;理由是:如圖1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四邊形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四邊形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案為①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所畫正方形CHIJ見右圖.23、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解題分析】

(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論