2024屆河南省扶溝縣高三數學第一學期期末復習檢測模擬試題含解析_第1頁
2024屆河南省扶溝縣高三數學第一學期期末復習檢測模擬試題含解析_第2頁
2024屆河南省扶溝縣高三數學第一學期期末復習檢測模擬試題含解析_第3頁
2024屆河南省扶溝縣高三數學第一學期期末復習檢測模擬試題含解析_第4頁
2024屆河南省扶溝縣高三數學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省扶溝縣高三數學第一學期期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.2.若函數有且只有4個不同的零點,則實數的取值范圍是()A. B. C. D.3.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.4.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數列,且,則橢圓的離心率為A. B. C. D.5.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.66.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.7.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.48.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.9.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.10.已知向量,是單位向量,若,則()A. B. C. D.11.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.212.已知為虛數單位,若復數,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為數列的前項和.若,則______.14.某種賭博每局的規(guī)則是:賭客先在標記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.15.設雙曲線的一條漸近線方程為,則該雙曲線的離心率為____________.16.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實數a,b滿足1a+118.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數的頻數分布表:時間人數156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.列聯表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87919.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案①,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數)20.(12分)已知等比數列中,,是和的等差中項.(1)求數列的通項公式;(2)記,求數列的前項和.21.(12分)在直角坐標系中,曲線上的任意一點到直線的距離比點到點的距離小1.(1)求動點的軌跡的方程;(2)若點是圓上一動點,過點作曲線的兩條切線,切點分別為,求直線斜率的取值范圍.22.(10分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題意利用函數的圖象變換規(guī)律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規(guī)律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.2、B【解析】

由是偶函數,則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數性質的應用以及根據零點個數確定參數的取值范圍,基礎題.3、B【解析】

根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.4、D【解析】

如圖所示,設依次構成等差數列,其公差為.根據橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.5、C【解析】

由橢圓的定義以及雙曲線的定義、離心率公式化簡,結合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.6、D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.7、D【解析】

用去換中的n,得,相加即可找到數列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.8、D【解析】

取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.9、D【解析】

求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.10、C【解析】

設,根據題意求出的值,代入向量夾角公式,即可得答案;【詳解】設,,是單位向量,,,,聯立方程解得:或當時,;當時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.11、D【解析】

由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設則,即,所以.所以線段的中點到軸的距離為.故選:D.【點睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關鍵是由拋物線的定義求得兩點橫坐標的和.12、B【解析】

因為,所以,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由已知數列遞推式可得數列是以16為首項,以為公比的等比數列,再由等比數列的前項和公式求解.【詳解】由,得,.且,則,即.數列是以16為首項,以為公比的等比數列,則.故答案為:1.【點睛】本題主要考查數列遞推式,考查等比數列的前項和,意在考查學生對這些知識的理解掌握水平.14、20.2【解析】

分別求出隨機變量ξ1和ξ2的分布列,根據期望和方差公式計算得解.【詳解】設a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點睛】此題考查隨機變量及其分布,關鍵在于準確求出隨機變量取值的概率,根據公式準確計算期望和方差.15、【解析】

根據漸近線得到,,計算得到離心率.【詳解】,一條漸近線方程為:,故,,.故答案為:.【點睛】本題考查了雙曲線的漸近線和離心率,意在考查學生的計算能力.16、【解析】

根據三角函數定義表示出,由同角三角函數關系式結合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數定義可知,因為,則,所以由同角三角函數關系式可得,所以故答案為:.【點睛】本題考查了三角函數定義,同角三角函數關系式的應用,余弦差角公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ){x|-3≤x≤2}(Ⅱ)見證明【解析】

(Ⅰ)由題意結合不等式的性質零點分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(Ⅰ)①當x>1時,f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②當-2≤x≤1時,f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③當x<-2時,f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.綜上所述,原不等式的解集為{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1當且僅當-2≤x≤1時,等號成立.∴f(x)的最小值m=3.∴[(即2a當且僅當2a×1又1a+1b=∴2a【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,絕對值三角不等式求最值的方法等知識,意在考查學生的轉化能力和計算求解能力.18、(1)列聯表見解析,有;(2)分布列見解析,.【解析】

(1)根據題意,結合已知數據即可填寫列聯表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數,再求出的可取值,根據古典概型的概率計算公式求得分布列,結合分布列即可求得數學期望.【詳解】(1)因為樣本數據中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯表如下:辦理社保手續(xù)所需時間與是否流動人員列聯表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結合列聯表可算得.有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.(2)根據分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數學期望,涉及分層抽樣,屬綜合性中檔題.19、(1)分布列見解析;(2)406.【解析】

(1)計算個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為,得到分布列.(2)計算,代入數據計算比較大小得到答案.【詳解】(1)設每個人的血呈陰性反應的概率為,則.所以個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為.依題意可知,,所以的分布列為:(2)方案②中.結合(1)知每個人的平均化驗次數為:時,,此時1000人需要化驗的總次數為690次,時,,此時1000人需要化驗的總次數為604次,時,,此時1000人需要化驗的次數總為594次,即時化驗次數最多,時次數居中,時化驗次數最少,而采用方案①則需化驗1000次,故在這三種分組情況下,相比方案①,當時化驗次數最多可以平均減少次.【點睛】本題考查了分布列,數學期望,意在考查學生的計算能力和應用能力.20、(1)(2)【解析】

(1)用等比數列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數列的通項公式即可求得結果;(2)把(1)中求得的結果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設數列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.21、(1);(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論