版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024年安徽省阜陽市潁上縣第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,拋物線:的焦點(diǎn)為,過點(diǎn)的直線與拋物線交于,兩點(diǎn),若直線與以為圓心,線段(為坐標(biāo)原點(diǎn))長為半徑的圓交于,兩點(diǎn),則關(guān)于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定2.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.3.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.4.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.5.若復(fù)數(shù)滿足,則()A. B. C. D.6.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}7.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.8.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a為()A. B.2 C. D.9.已知,且,則()A. B. C. D.10.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.11.已知等差數(shù)列中,則()A.10 B.16 C.20 D.2412.設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值是______.14.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點(diǎn)的軌跡方程為_________.15.曲線在處的切線方程是_________.16.在中,,.若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實(shí)數(shù)的取值范圍.18.(12分)設(shè)數(shù)列是等差數(shù)列,其前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:.19.(12分)已知橢圓的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點(diǎn)的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點(diǎn),,橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.20.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(diǎn)(1)求證:平面平面;(2)設(shè)為的中點(diǎn),為上的動(dòng)點(diǎn)(不與重合)求二面角的正切值的最小值21.(12分)已知函數(shù).(Ⅰ)已知是的一個(gè)極值點(diǎn),求曲線在處的切線方程(Ⅱ)討論關(guān)于的方程根的個(gè)數(shù).22.(10分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:AQI空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個(gè)月因空氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過2.88萬元?說明你的理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點(diǎn)的坐標(biāo)為.設(shè)直線的方程為,點(diǎn),的坐標(biāo)分別為,.討論:當(dāng)時(shí),;當(dāng)時(shí),據(jù),得,所以,所以.【點(diǎn)睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題2、D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.3、A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.4、C【解析】
先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【點(diǎn)睛】本題考查古典概型的概率的求法,涉及實(shí)際問題中組合數(shù)的應(yīng)用.5、B【解析】
由題意得,,求解即可.【詳解】因?yàn)?所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.6、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.7、B【解析】
設(shè),則,,因?yàn)椋裕?,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.8、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由實(shí)部為求得值.【詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在虛軸上,,即.故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.9、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.10、D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點(diǎn)睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.11、C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.12、C【解析】試題分析:設(shè),由題意,顯然時(shí)不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選C.考點(diǎn):1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點(diǎn)晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運(yùn)用,屬于中檔題.解題時(shí)一定要注意分析條件,根據(jù)條件,利用向量的運(yùn)算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號(hào)是否成立,否則易出問題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
先將前兩項(xiàng)利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因?yàn)?,所以,所以,?dāng)且僅當(dāng),,時(shí)等號(hào)成立,故答案為:1.【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個(gè)變量,導(dǎo)致該題不易找到思路,屬于中檔題.14、【解析】
根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運(yùn)算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點(diǎn)坐標(biāo)為,且在線段的垂直平分線上,,即,同理可得:,,,點(diǎn)的軌跡方程為.故答案為:.【點(diǎn)睛】本題考查動(dòng)點(diǎn)軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對數(shù)運(yùn)算法則構(gòu)造出滿足的方程,由此得到結(jié)果.15、【解析】
利用導(dǎo)數(shù)的運(yùn)算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【點(diǎn)睛】本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運(yùn)算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、【解析】分析:首先設(shè)出相應(yīng)的直角邊長,利用余弦勾股定理得到相應(yīng)的斜邊長,之后應(yīng)用余弦定理得到直角邊長之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對邊比臨邊,求得對應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡整理得,即,解得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)解三角形的問題,在解題的過程中,注意分析要求對應(yīng)角的正切值,需要求誰,而題中所給的條件與對應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)按絕對值的定義分類討論去絕對值符號(hào)后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號(hào)后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時(shí),,即所以只需在時(shí)恒成立即可令,由解析式得在上是增函數(shù),∴當(dāng)時(shí),即【點(diǎn)睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關(guān)鍵.18、(1)(2)見解析【解析】
(1)設(shè)數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設(shè)數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式的計(jì)算,放縮法證明數(shù)列不等式,屬于中檔題.19、(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時(shí),的斜率為0時(shí),的斜率存在且不為0時(shí),設(shè)出直線方程,聯(lián)立方程組,用韋達(dá)定理和弦長公式以及四邊形的面積公式計(jì)算即可.【詳解】(1)由焦點(diǎn)與短軸兩端點(diǎn)的連線相互垂直及橢圓的對稱性可知,,∵過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時(shí),直線的斜率為0,此時(shí)(ii)當(dāng)直線的斜率為零時(shí),.(iii)當(dāng)直線的斜率存在且不等于零時(shí),設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長度也可以用點(diǎn)到直線的距離和勾股定理計(jì)算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標(biāo)函數(shù)解析式,運(yùn)用函數(shù)知識(shí)求解;本題是難題.20、(1)見解析(2)【解析】
(1)推導(dǎo)出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時(shí),正切值求得最小值;【詳解】(1)因?yàn)椋?,,平面,平面,平面,又平面,平面平面;?)過作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時(shí)取得最大值,最大值為,則最小值為【點(diǎn)睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.21、(Ⅰ);(Ⅱ)見解析【解析】
(Ⅰ)求函數(shù)的導(dǎo)數(shù),利用x=2是f(x)的一個(gè)極值點(diǎn),得f'(2)=0建立方程求出a的值,結(jié)合導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;(Ⅱ)利用參數(shù)法分離法得到,構(gòu)造函數(shù)求出函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,利用數(shù)形結(jié)合轉(zhuǎn)化為圖象交點(diǎn)個(gè)數(shù)進(jìn)行求解即可.【詳解】(Ⅰ)因?yàn)?,則,因?yàn)槭堑囊粋€(gè)極值點(diǎn),所以,即,所以,因?yàn)?,,則直線方程為,即;(Ⅱ)因?yàn)椋?,所以,設(shè),則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設(shè),則,所以在上是減函數(shù),上是增函數(shù),所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床微生物檢驗(yàn)標(biāo)本的采集課件
- 2024版國際貿(mào)易合同履行稅務(wù)籌劃服務(wù)協(xié)議2篇
- 俄語跨文化交際知到智慧樹章節(jié)測試課后答案2024年秋山東外國語職業(yè)技術(shù)大學(xué)
- 2025年度廠房租賃合同書(含設(shè)施設(shè)備維護(hù)責(zé)任)2篇
- 大數(shù)據(jù)分析服務(wù)租賃合同文本
- 城市人工打水井施工合同
- 湖景別墅交易合同模板
- 建筑排水勞務(wù)分包協(xié)議模板
- 醫(yī)療技術(shù)推廣協(xié)議
- 2024碼頭安全防范與應(yīng)急救援服務(wù)合同范本3篇
- 危險(xiǎn)化學(xué)品考試試題(含答案)
- 園林綠化工程分部(子分部)工程、分項(xiàng)工程劃分
- 物業(yè)市場拓展部工作總結(jié)
- 馬克思主義基本原理-2023版-課后習(xí)題答案
- 基坑支護(hù)工程質(zhì)量控制要點(diǎn)
- 2024年度公司大事記
- (試題)考試護(hù)理應(yīng)急預(yù)案題庫與答案
- 【閱讀提升】部編版語文五年級(jí)下冊第一單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 2024年大學(xué)試題(管理類)-行政管理學(xué)筆試歷年真題薈萃含答案
- 《爆破振動(dòng)測試技術(shù)》課件
- 醫(yī)療機(jī)構(gòu)規(guī)章制度目錄
評(píng)論
0/150
提交評(píng)論