![山西省八所重點(diǎn)中學(xué)2024屆高三4月考數(shù)學(xué)試題文試卷_第1頁(yè)](http://file4.renrendoc.com/view10/M03/1F/36/wKhkGWWPUCSANglAAAJSjeKONqE644.jpg)
![山西省八所重點(diǎn)中學(xué)2024屆高三4月考數(shù)學(xué)試題文試卷_第2頁(yè)](http://file4.renrendoc.com/view10/M03/1F/36/wKhkGWWPUCSANglAAAJSjeKONqE6442.jpg)
![山西省八所重點(diǎn)中學(xué)2024屆高三4月考數(shù)學(xué)試題文試卷_第3頁(yè)](http://file4.renrendoc.com/view10/M03/1F/36/wKhkGWWPUCSANglAAAJSjeKONqE6443.jpg)
![山西省八所重點(diǎn)中學(xué)2024屆高三4月考數(shù)學(xué)試題文試卷_第4頁(yè)](http://file4.renrendoc.com/view10/M03/1F/36/wKhkGWWPUCSANglAAAJSjeKONqE6444.jpg)
![山西省八所重點(diǎn)中學(xué)2024屆高三4月考數(shù)學(xué)試題文試卷_第5頁(yè)](http://file4.renrendoc.com/view10/M03/1F/36/wKhkGWWPUCSANglAAAJSjeKONqE6445.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省八所重點(diǎn)中學(xué)2024屆高三4月考數(shù)學(xué)試題文試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若sin(α+3π2A.-12 B.-132.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a3.已知函數(shù)fx=sinωx+π6+A.16,13 B.14.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④5.下列結(jié)論中正確的個(gè)數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項(xiàng)公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.06.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.7.已知我市某居民小區(qū)戶主人數(shù)和戶主對(duì)戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對(duì)戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,188.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.19.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.10.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.11.若,則()A. B. C. D.12.設(shè)是虛數(shù)單位,,,則()A. B. C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切?,則實(shí)數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.14.曲線y=e-5x+2在點(diǎn)(0,3)處的切線方程為________.15.設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值是______.16.如圖,直線是曲線在處的切線,則________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;(Ⅱ)中,,角所對(duì)的邊分別是,且,求的面積.18.(12分)已知橢圓過(guò)點(diǎn),設(shè)橢圓的上頂點(diǎn)為,右頂點(diǎn)和右焦點(diǎn)分別為,,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線交橢圓于,兩點(diǎn),設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.19.(12分)隨著現(xiàn)代社會(huì)的發(fā)展,我國(guó)對(duì)于環(huán)境保護(hù)越來(lái)越重視,企業(yè)的環(huán)保意識(shí)也越來(lái)越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測(cè)系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用預(yù)算定為1200萬(wàn)元,日常全天候開啟3套環(huán)境監(jiān)測(cè)系統(tǒng),若至少有2套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),則立即同時(shí)啟動(dòng)另外2套系統(tǒng)進(jìn)行1小時(shí)的監(jiān)測(cè),且后啟動(dòng)的這2套監(jiān)測(cè)系統(tǒng)中只要有1套系統(tǒng)監(jiān)測(cè)出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個(gè)時(shí)間段(以1小時(shí)為計(jì)量單位)被每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)的概率均為,且各個(gè)時(shí)間段每套系統(tǒng)監(jiān)測(cè)出排放超標(biāo)情況相互獨(dú)立.(1)當(dāng)時(shí),求某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測(cè)系統(tǒng)運(yùn)行成本為300元/小時(shí)(不啟動(dòng)則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測(cè)系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬(wàn)元.現(xiàn)以此方案實(shí)施,問(wèn)該企業(yè)的環(huán)境監(jiān)測(cè)費(fèi)用是否會(huì)超過(guò)預(yù)算(全年按9000小時(shí)計(jì)算)?并說(shuō)明理由.20.(12分)在中,角,,的對(duì)邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點(diǎn),求的最小值.21.(12分)設(shè)數(shù)列是等差數(shù)列,其前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:.22.(10分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大??;(2)求點(diǎn)到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡(jiǎn)即可.【題目詳解】因?yàn)閟inα+3π2=3故選B【題目點(diǎn)撥】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.2、A【解題分析】
令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x2,【題目詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時(shí),g(x)<0,x>0時(shí),g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【題目點(diǎn)撥】解決函數(shù)零點(diǎn)問(wèn)題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.3、A【解題分析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【題目詳解】f當(dāng)x∈0,π時(shí),又f0=3sin由fx在0,π上的值域?yàn)?2解得:ω∈本題正確選項(xiàng):A【題目點(diǎn)撥】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問(wèn)題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.4、D【解題分析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【題目詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【題目點(diǎn)撥】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.5、B【解題分析】
根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【題目詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項(xiàng)公式為,可得為一次項(xiàng)系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則與可以相交或平行,故②錯(cuò)誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯(cuò)誤;④若,則,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故④正確;綜上可得正確的有①④共2個(gè);故選:B【題目點(diǎn)撥】本題考查命題的真假判斷,主要是正弦定理的運(yùn)用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運(yùn)算能力和推理能力,屬于中檔題.6、B【解題分析】
畫出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【題目詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時(shí),點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時(shí).所以的取值范圍是.故選:B【題目點(diǎn)撥】本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).7、A【解題分析】
利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對(duì)四居室滿意的人數(shù).【題目詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對(duì)四居室滿意的人數(shù)為:故選A.【題目點(diǎn)撥】本題考查樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.8、C【解題分析】
利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【題目詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【題目點(diǎn)撥】本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.9、B【解題分析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【題目詳解】因?yàn)椋运倪呅螢槠叫兴倪呅?又因?yàn)槠矫妫矫?,所以平面,所以平?在直角三角形中,,設(shè),則,所以,所以.又因?yàn)椋?dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以.故選:B.【題目點(diǎn)撥】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長(zhǎng)為,用建立體積與邊長(zhǎng)的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.10、B【解題分析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【題目詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時(shí),檢驗(yàn)可得,A、C、D都不正確,故選:B.【題目點(diǎn)撥】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).11、D【解題分析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【題目詳解】∵,∴,故選D【題目點(diǎn)撥】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.12、C【解題分析】
由,可得,通過(guò)等號(hào)左右實(shí)部和虛部分別相等即可求出的值.【題目詳解】解:,,解得:.故選:C.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的運(yùn)算,考查了復(fù)數(shù)相等的涵義.對(duì)于復(fù)數(shù)的運(yùn)算類問(wèn)題,易錯(cuò)點(diǎn)是把當(dāng)成進(jìn)行運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【題目詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過(guò)點(diǎn)時(shí),此時(shí),直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.【題目點(diǎn)撥】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法,屬于基礎(chǔ)題.14、.【解題分析】
先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【題目詳解】因?yàn)閥′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【題目點(diǎn)撥】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是15、1【解題分析】
由題得,解不等式得解.【題目詳解】因?yàn)?,所以,所以c=1.故答案為1【題目點(diǎn)撥】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.16、.【解題分析】
求出切線的斜率,即可求出結(jié)論.【題目詳解】由圖可知直線過(guò)點(diǎn),可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)【解題分析】
(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調(diào)性可得x滿足即所以f(x)在[0,π]上的單調(diào)遞減區(qū)間為(2)設(shè)△ABC的外接圓半徑為R,由題意,得化簡(jiǎn)得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故18、(1)(2)直線過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為.【解題分析】
(1)因?yàn)闄E圓過(guò)點(diǎn),所以①,設(shè)為坐標(biāo)原點(diǎn),因?yàn)?,所以,又,所以②,將①②?lián)立解得(負(fù)值舍去),所以橢圓的標(biāo)準(zhǔn)方程為.(2)由(1)可知,設(shè),.將代入,消去可得,則,,,所以,所以,此時(shí),所以,此時(shí)直線的方程為,即,令,可得,所以直線過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為.19、(1);(2)不會(huì)超過(guò)預(yù)算,理由見解析【解題分析】
(1)求出某個(gè)時(shí)間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個(gè)時(shí)間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測(cè)系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對(duì)其求導(dǎo),研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.【題目詳解】(1)某個(gè)時(shí)間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個(gè)時(shí)間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率為.(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測(cè)系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.,令,則當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,在上單調(diào)遞減,的最大值為,實(shí)施此方案,最高費(fèi)用為(萬(wàn)元),,故不會(huì)超過(guò)預(yù)算.【題目點(diǎn)撥】本題考查獨(dú)立重復(fù)事件發(fā)生的概率、期望,及運(yùn)用求導(dǎo)函數(shù)研究期望的最值,由根據(jù)期望值確定方案,此類題目解決的關(guān)鍵在于將生活中的量轉(zhuǎn)化為數(shù)學(xué)中和量,屬于中檔題.20、(1);(2).【解題分析】
(1)利用余弦定理和二
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場(chǎng)施工防突發(fā)公共衛(wèi)生事件威脅制度
- 跨界合作中的對(duì)公客戶關(guān)系管理策略探討
- 中外合資經(jīng)營(yíng)企業(yè)合同(交通基礎(chǔ)設(shè)施項(xiàng)目)
- 二手車行業(yè)合同標(biāo)準(zhǔn)格式
- 一手房購(gòu)買合同樣本大全
- 個(gè)人保證擔(dān)保債務(wù)合同樣本
- 中外合作生產(chǎn)合同(環(huán)保鍋爐)
- 專利權(quán)轉(zhuǎn)讓合同(三)
- 個(gè)人土地流轉(zhuǎn)合同范本
- 個(gè)體工商戶勞動(dòng)雇傭合同
- 《石油鉆井基本知識(shí)》課件
- 電力兩票培訓(xùn)
- TCCEAS001-2022建設(shè)項(xiàng)目工程總承包計(jì)價(jià)規(guī)范
- 2024.8.1十七個(gè)崗位安全操作規(guī)程手冊(cè)(值得借鑒)
- 中學(xué)生手機(jī)使用管理協(xié)議書
- 給排水科學(xué)與工程基礎(chǔ)知識(shí)單選題100道及答案解析
- 2024年土地變更調(diào)查培訓(xùn)
- 2024年全國(guó)外貿(mào)單證員鑒定理論試題庫(kù)(含答案)
- 新版中國(guó)食物成分表
- 運(yùn)輸車輛掛靠協(xié)議書(15篇)
- 完整版:美制螺紋尺寸對(duì)照表(牙數(shù)、牙高、螺距、小徑、中徑外徑、鉆孔)
評(píng)論
0/150
提交評(píng)論