




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆黑龍江省哈爾濱市第三中學高三5月三校聯(lián)考數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.2.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.3.已知復數(shù)z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.5.對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有6.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.7.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.8.設為虛數(shù)單位,復數(shù),則實數(shù)的值是()A.1 B.-1 C.0 D.29.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.310.已知函數(shù)是定義在上的偶函數(shù),且在上單調遞增,則()A. B.C. D.11.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.18012.函數(shù)的大致圖象是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為______.14.在數(shù)列中,已知,則數(shù)列的的前項和為__________.15.若,則________.16.的展開式中的常數(shù)項為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)以直角坐標系的原點為極點,軸的非負半軸為極軸,且兩坐標系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標方程:(1)求曲線的極坐標方程;(2)若直線與曲線交于、兩點,求的最大值.18.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.19.(12分)已知實數(shù)x,y,z滿足,證明:.20.(12分)已知函數(shù).(1)若,求函數(shù)的單調區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù)(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.22.(10分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【題目詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【題目點撥】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質分析,常見方法為排除法.2、A【解題分析】
根據(jù)實數(shù)滿足的等量關系,代入后將方程變形,構造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數(shù)的取值范圍.【題目詳解】函數(shù),,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【題目點撥】本題考查了導數(shù)在求函數(shù)最值中的應用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.3、A【解題分析】
設,由得:,由復數(shù)相等可得的值,進而求出,即可得解.【題目詳解】設,由得:,即,由復數(shù)相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【題目點撥】本題考查共軛復數(shù)的求法,考查對復數(shù)相等的理解,考查復數(shù)在復平面對應的點,考查運算能力,屬于常考題.4、A【解題分析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【題目詳解】水費開支占總開支的百分比為.故選:A【題目點撥】本題考查折線圖與柱形圖,屬于基礎題.5、B【解題分析】
根據(jù)函數(shù)對稱性和單調性的關系,進行判斷即可.【題目詳解】由得關于對稱,若關于對稱,則函數(shù)在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【題目點撥】本題主要考查函數(shù)性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.6、B【解題分析】
通過拋物線的定義,轉化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【題目詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【題目點撥】本題考查拋物線的基本性質,直線與拋物線的位置關系,轉化思想的應用,屬于基礎題.7、B【解題分析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【題目詳解】∵角的終邊過點,∴,.∴.故選:.【題目點撥】本題考查了三角函數(shù)定義,和差公式,意在考查學生的計算能力.8、A【解題分析】
根據(jù)復數(shù)的乘法運算化簡,由復數(shù)的意義即可求得的值.【題目詳解】復數(shù),由復數(shù)乘法運算化簡可得,所以由復數(shù)定義可知,解得,故選:A.【題目點撥】本題考查了復數(shù)的乘法運算,復數(shù)的意義,屬于基礎題.9、A【解題分析】
根據(jù)復數(shù)除法運算化簡,結合純虛數(shù)定義即可求得m的值.【題目詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.【題目點撥】本題考查了復數(shù)的概念和除法運算,屬于基礎題.10、C【解題分析】
根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結合函數(shù)的單調性分析可得答案.【題目詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調遞增,則有,故選C.【題目點撥】本題主要考查函數(shù)的奇偶性與單調性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎題.11、D【解題分析】
求的展開式中的常數(shù)項,可轉化為求展開式中的常數(shù)項和項,再求和即可得出答案.【題目詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【題目點撥】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.12、A【解題分析】
利用函數(shù)的對稱性及函數(shù)值的符號即可作出判斷.【題目詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【題目點撥】本題考查了函數(shù)圖象的判斷,函數(shù)對稱性的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】
由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積.【題目詳解】如圖,作,交于,,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:.故答案為:1.【題目點撥】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結構特征等基礎知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量.14、【解題分析】
由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項與偶數(shù)項分別構成以2為公比的等比數(shù)列,求其通項公式,得到,再由求解.【題目詳解】解:由,得,,則數(shù)列的所有奇數(shù)項與偶數(shù)項分別構成以2為公比的等比數(shù)列.,..故答案為:.【題目點撥】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項公式,訓練了數(shù)列的分組求和,屬于中檔題.15、13【解題分析】
由導函數(shù)的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【題目詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【題目點撥】本題考查了導函數(shù)的應用、二項式定理,屬于中檔題16、160【解題分析】
先求的展開式中通項,令的指數(shù)為3即可求解結論.【題目詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數(shù)項為:.故答案為:160.【題目點撥】本題考查二項式系數(shù)的性質,關鍵是熟記二項展開式的通項,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)10【解題分析】
(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標與直角坐標的互化公式,代入即可求得曲線C的極坐標方程;(2)將代入曲線C的極坐標方程,利用根與系數(shù)的關系,求得,進而得到=,結合三角函數(shù)的性質,即可求解.【題目詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標方程為.(2)將代入,得,即,所以=,其中,當時,取最大值,最大值為10.【題目點撥】本題主要考查了參數(shù)方程與普通方程,極坐標方程與直角坐標方程的互化,以及曲線的極坐標方程的應用,著重考查了運算與求解能力,屬于中檔試題.18、另一個特征值為,對應的一個特征向量【解題分析】
根據(jù)特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應的一個特征向量.【題目詳解】矩陣的特征多項式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設對應的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應的一個特征向量【題目點撥】本題考查了矩陣的特征值以及特征向量,需掌握特征多項式的計算形式,屬于基礎題.19、見解析【解題分析】
已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【題目詳解】,.由柯西不等式得,...【題目點撥】本題考查柯西不等式的應用,屬于基礎題.20、(1)增區(qū)間為,減區(qū)間為;(2).【解題分析】
(1)將代入函數(shù)的解析式,利用導數(shù)可得出函數(shù)的單調區(qū)間;(2)求函數(shù)的導數(shù),分類討論的范圍,利用導數(shù)分析函數(shù)的單調性,求出函數(shù)的最值可判斷是否恒成立,可得實數(shù)的取值范圍.【題目詳解】(1)當時,,則,當時,,則,此時,函數(shù)為減函數(shù);當時,,則,此時,函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當時,即當時,,由,得,此時,函數(shù)為增函數(shù);由,得,此時,函數(shù)為減函數(shù).則,不合乎題意;②當時,即時,.不妨設,其中,令,則或.(i)當時,,當時,,此時,函數(shù)為增函數(shù);當時,,此時,函數(shù)為減函數(shù);當時,,此時,函數(shù)為增函數(shù).此時,而,構造函數(shù),,則,所以,函數(shù)在區(qū)間上單調遞增,則,即當時,,所以,.,符合題意;②當時,,函數(shù)在上為增函數(shù),,符合題意;③當時,同理可得函數(shù)在上單調遞增,在上單調遞減,在上單調遞增,此時,則,解得.綜上所述,實數(shù)的取值范圍是.【題目點撥】本題考查導數(shù)知識的運用,考查函數(shù)的單調性與最值,考查恒成立問題,正確求導和分類討論是關鍵,屬于難題.21、(1)證明見解析(2)【解題分析】
(1)根據(jù),求導,令,用導數(shù)法求其最小值.設研究在處左正右負,求導,分,,三種情況討論求解.【題目詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當時,,所以函數(shù)在上單調遞增.若,則若,則所以函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是,所以在處取得極小值,不符合題意,②當時,所以函數(shù)在上單調遞減.若,則若,則所以的單調遞減區(qū)間是,單調遞增區(qū)間是,所以在處取得極大值,符合題意.③當時,,使得,即,但當時,即所以函數(shù)在上單調遞減,所以,即函數(shù))在上單調遞減,不符合題意綜上所述,的取值范圍是【題目點撥】本題主要考查導數(shù)與函數(shù)的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國硅膠助劑市場調查研究報告
- 2025年浙江體育職業(yè)技術學院單招職業(yè)技能測試題庫附答案
- 小學生課程課件
- 二零二五年度研學旅行基地運營管理合同協(xié)議
- 二零二五年度高校畢業(yè)生就業(yè)實習培訓三方協(xié)議書
- 二零二五年度房產(chǎn)中介個人購房傭金執(zhí)行協(xié)議
- 2025年中國汽車前門裝飾板市場調查研究報告
- 二零二五年度個人教育產(chǎn)業(yè)投資委托協(xié)議
- 二零二五年度學生實習實訓基地實習安全管理協(xié)議
- 2025年度租賃房屋合同協(xié)議書(含租賃用途限制)
- 水產(chǎn)業(yè)園區(qū)合作協(xié)議書范文
- 異常子宮出血的課件
- 2024年禮儀風俗傳統(tǒng)文化知識競賽-中國傳統(tǒng)節(jié)日知識競賽考試近5年真題附答案
- 編制說明-放牧家畜穿戴式傳感器
- DB34T∕ 2452-2015 旅行社小包團服務指南
- 隊列研究評估預后標志物的外部驗證
- 2024全國各地區(qū)英語中考真題匯編《第一期》
- 電梯應急救援與事故處理考核試卷
- 第1章 跨境電商概述
- 2024-2030年中國長管拖車行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 《高等教育學》近年考試真題題庫(含答案)
評論
0/150
提交評論