




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆北京市西城區(qū)北京四中高三一輪第五次階段性過關(guān)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.402.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.3.已知向量與向量平行,,且,則()A. B.C. D.4.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.5.已知是定義在上的奇函數(shù),且當(dāng)時(shí),.若,則的解集是()A. B.C. D.6.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.7.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個(gè)樣本點(diǎn)落在回歸直線上B.若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)8.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個(gè)半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.9.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,10.已知菱形的邊長為2,,則()A.4 B.6 C. D.11.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.12.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長,且該三角形有一個(gè)內(nèi)角為,若對任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為______.14.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長度的最大值為___________.15.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_______.16.已知復(fù)數(shù)(為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長.18.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個(gè)內(nèi)角,若,求的值;19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長.21.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時(shí),求證:①;②.22.(10分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時(shí)x的取值范圍;(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計(jì)算即可.【題目詳解】由已知,,,故,解得或(舍),故,.故選:B.【題目點(diǎn)撥】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計(jì)算,是一道容易題.2、D【解題分析】
設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【題目詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【題目點(diǎn)撥】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來求解最值.3、B【解題分析】
設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可得出向量的坐標(biāo).【題目詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【題目點(diǎn)撥】本題考查向量坐標(biāo)的求解,涉及共線向量的坐標(biāo)表示和向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中等題.4、B【解題分析】
利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【題目詳解】由題意,,解得.故選:B.【題目點(diǎn)撥】本題考查簡單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.5、B【解題分析】
利用函數(shù)奇偶性可求得在時(shí)的解析式和,進(jìn)而構(gòu)造出不等式求得結(jié)果.【題目詳解】為定義在上的奇函數(shù),.當(dāng)時(shí),,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【題目點(diǎn)撥】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點(diǎn)是忽略奇函數(shù)在處有意義時(shí),的情況.6、D【解題分析】
根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【題目詳解】.故選:D.【題目點(diǎn)撥】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.7、D【解題分析】
對每一個(gè)選項(xiàng)逐一分析判斷得解.【題目詳解】回歸直線必過樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上﹐故A錯誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【題目點(diǎn)撥】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.8、A【解題分析】由題意得到該幾何體是一個(gè)組合體,前半部分是一個(gè)高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個(gè)底面半徑為2的半個(gè)圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.9、B【解題分析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個(gè),成績不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.10、B【解題分析】
根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【題目詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【題目點(diǎn)撥】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問題,屬于基礎(chǔ)題..11、C【解題分析】
由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【題目詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【題目點(diǎn)撥】本題考查的知識點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.12、C【解題分析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【題目詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【題目點(diǎn)撥】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【題目詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【題目點(diǎn)撥】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.14、【解題分析】
取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時(shí),弦的長才最大.【題目詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【題目點(diǎn)撥】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.15、【解題分析】
先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【題目詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【題目點(diǎn)撥】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解題分析】
利用復(fù)數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【題目詳解】解:復(fù)數(shù)為純虛數(shù),解得.故答案為:.【題目點(diǎn)撥】本題主要考查了根據(jù)復(fù)數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).x2+y2=1.(2)16【解題分析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【題目詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【題目點(diǎn)撥】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、(1)(2)【解題分析】
(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【題目詳解】(1),,,,即的值域?yàn)?;?)由,得,又為的內(nèi)角,所以,又因?yàn)樵谥校?,所以,所?【題目點(diǎn)撥】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題,19、(1)見解析;(2)見解析【解題分析】
(1)求得的導(dǎo)函數(shù),對分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達(dá)定理求得的關(guān)系式,利用差比較法,計(jì)算,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進(jìn)而證得不等式成立.【題目詳解】(1).當(dāng)時(shí),,此時(shí)在上單調(diào)遞減;當(dāng)時(shí),由解得或,∵是增函數(shù),∴此時(shí)在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【題目點(diǎn)撥】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1),;(2).【解題分析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;(2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【題目詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:.轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:,化為一般式得化為極坐標(biāo)方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【題目點(diǎn)撥】本題主要考查參數(shù)方程與普通方程的互化、直角坐標(biāo)方程與極坐標(biāo)方程的互化,熟記公式即可,屬于常考題型.21、(1)(2)①證明見解析②證明見解析【解題分析】
(1)首先根據(jù)直線關(guān)于直線對稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時(shí),,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡后得到.【題目詳解】(1)由解得必過與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對稱的點(diǎn)為,即為直線,所以的方程為,即,其斜率為.又因?yàn)?,所以,,由題意,解得.(2)因?yàn)椋?①令,則,則,且,,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.因?yàn)?,所以,因?yàn)?,所以存在,使時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.又,所以時(shí),,即,所以,即成立.②由①知成立,即有成立.令,即.所以時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減,所以,即,因?yàn)?,所以,所以時(shí),,即時(shí),.【題目點(diǎn)撥】本小題考查函數(shù)圖象的對稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識;考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年張家口貨運(yùn)資格證考試有哪些項(xiàng)目
- 加工衣服合同范本
- 2025年重慶貨運(yùn)從業(yè)資格證模擬考試保過版
- 買方解除合同范本
- 個(gè)人服裝采購合同范本
- 個(gè)人庭院出租合同范本
- 基槽土夾石換填施工方案
- 臨沂制砂機(jī)采購合同范本
- 免責(zé)任勞務(wù)合同范本
- 買賣農(nóng)村房屋合同范本
- 2023中職27 嬰幼兒保育 賽題 模塊三 嬰幼兒早期學(xué)習(xí)支持(賽項(xiàng)賽題)
- 教師師德和專業(yè)發(fā)展課件
- 服務(wù)器巡檢報(bào)告模版
- 2023年中國煤化工行業(yè)全景圖譜
- 2023年高中生物新教材人教版(2023年)必修二全冊教案
- 小學(xué)美術(shù) 四年級 人教版《造型?表現(xiàn)-色彩表現(xiàn)與創(chuàng)作》“色彩”單元美術(shù)作業(yè)設(shè)計(jì)《色彩的明與暗》《色彩的漸變》《色彩的情感》
- 中國心臟重癥鎮(zhèn)靜鎮(zhèn)痛專家共識專家講座
- 川教版七年級生命生態(tài)安全下冊第1課《森林草原火災(zāi)的危害》教案
- 護(hù)理人員心理健康
- 安全技術(shù)說明書粗苯
- 單招面試技巧范文
評論
0/150
提交評論