廣西桂林、梧州、貴港、玉林、崇左、北海2024屆高三數(shù)學試題月考試題_第1頁
廣西桂林、梧州、貴港、玉林、崇左、北海2024屆高三數(shù)學試題月考試題_第2頁
廣西桂林、梧州、貴港、玉林、崇左、北海2024屆高三數(shù)學試題月考試題_第3頁
廣西桂林、梧州、貴港、玉林、崇左、北海2024屆高三數(shù)學試題月考試題_第4頁
廣西桂林、梧州、貴港、玉林、崇左、北海2024屆高三數(shù)學試題月考試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西桂林、梧州、貴港、玉林、崇左、北海2024屆高三數(shù)學試題月考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.52.已知函數(shù),若,,,則a,b,c的大小關系是()A. B. C. D.3.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內部的一些虛線構成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關4.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.45.從5名學生中選出4名分別參加數(shù)學,物理,化學,生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.966.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.7.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為()A. B. C. D.8.點為的三條中線的交點,且,,則的值為()A. B. C. D.9.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.10.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.11.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.12.已知函數(shù),則不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則________,的面積為________.14.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.15.如圖,在中,,,,點在邊上,且,將射線繞著逆時針方向旋轉,并在所得射線上取一點,使得,連接,則的面積為__________.16.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點M對應的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.18.(12分)已知函數(shù),,且.(1)當時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實數(shù)根;(3)若方程的兩個實數(shù)根是,試比較,與的大小,并說明理由.19.(12分)已知數(shù)列的前項和為,且點在函數(shù)的圖像上;(1)求數(shù)列的通項公式;(2)設數(shù)列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;20.(12分)已知數(shù)列滿足(),數(shù)列的前項和,(),且,.(1)求數(shù)列的通項公式:(2)求數(shù)列的通項公式.(3)設,記是數(shù)列的前項和,求正整數(shù),使得對于任意的均有.21.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.22.(10分)在平面直角坐標系中,曲線(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

由對數(shù)運算法則和等比數(shù)列的性質計算.【題目詳解】由題意.故選:D.【題目點撥】本題考查等比數(shù)列的性質,考查對數(shù)的運算法則.掌握等比數(shù)列的性質是解題關鍵.2、D【解題分析】

根據(jù)題意,求出函數(shù)的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調性的關系分析可得在上為增函數(shù),又由,分析可得答案.【題目詳解】解:根據(jù)題意,函數(shù),其導數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【題目點撥】本題考查函數(shù)的導數(shù)與函數(shù)單調性的關系,涉及函數(shù)單調性的性質,屬于基礎題.3、B【解題分析】

根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結論.【題目詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【題目點撥】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.4、B【解題分析】

因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【題目詳解】請在此輸入詳解!5、D【解題分析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學生不參加任何比賽①當甲參加另外3場比賽時,共有?=72種選擇方案;②當甲學生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學生參加比賽為載體,考查了分類計數(shù)原理、排列數(shù)與組合數(shù)公式等知識,屬于基礎題.6、D【解題分析】

先求出的值域,再利用導數(shù)討論函數(shù)在區(qū)間上的單調性,結合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【題目詳解】因為,故,當時,,故在區(qū)間上單調遞減;當時,,故在區(qū)間上單調遞增;當時,令,解得,故在區(qū)間單調遞減,在區(qū)間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數(shù),當時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【題目點撥】本題考查利用導數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導數(shù)研究函數(shù)單調性以及函數(shù)值域的問題,屬綜合困難題.7、D【解題分析】

由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【題目詳解】,即函數(shù)在時是單調增函數(shù).則恒成立..令,則時,單調遞減,時單調遞增.故選:D.【題目點撥】本題考查構造函數(shù),借助單調性定義判斷新函數(shù)的單調性問題,考查恒成立時求解參數(shù)問題,考查學生的分析問題的能力和計算求解的能力,難度較難.8、B【解題分析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【題目詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【題目點撥】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.9、C【解題分析】

設球的半徑為R,根據(jù)組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【題目詳解】設球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【題目點撥】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.10、A【解題分析】

由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【題目詳解】如圖,其中,所以.故選:A【題目點撥】本題考查向量的線性運算在幾何中的應用,數(shù)形結合思想,屬于中檔題11、C【解題分析】

作出不等式組表示的平面區(qū)域,作出目標函數(shù)對應的直線,結合圖象知當直線過點時,取得最大值.【題目詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【題目點撥】本題主要考查線性規(guī)劃等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識,屬于中檔題.12、B【解題分析】

由導數(shù)確定函數(shù)的單調性,利用函數(shù)單調性解不等式即可.【題目詳解】函數(shù),可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【題目點撥】本題主要考查了利用導數(shù)判定函數(shù)的單調性,根據(jù)單調性解不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【題目詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【題目點撥】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎題.14、【解題分析】

根據(jù)向量關系表示,只需求出的取值范圍即可得解.【題目詳解】由題可得:,故答案為:【題目點撥】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關鍵在于恰當?shù)貙ο蛄窟M行轉換,便于計算解題.15、【解題分析】

由余弦定理求得,再結合正弦定理得,進而得,得,則面積可求【題目詳解】由,得,解得.因為,所以,,所以.又因為,所以.因為,所以.故答案為【題目點撥】本題考查正弦定理、余弦定理的應用,考查運算求解能力,是中檔題16、130.15.【解題分析】

由題意可得顧客需要支付的費用,然后分類討論,將原問題轉化為不等式恒成立的問題可得的最大值.【題目詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【題目點撥】本題主要考查不等式的概念與性質?數(shù)學的應用意識?數(shù)學式子變形與運算求解能力,以實際生活為背景,創(chuàng)設問題情境,考查學生身邊的數(shù)學,考查學生的數(shù)學建模素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)..(2)【解題分析】

(1)先求解a,b,消去參數(shù),即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設,,代入曲線直角坐標方程,可得的關系,轉化,可得解.【題目詳解】(1)將及對應的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標方程為.設圓的半徑為R,由題意,圓的極坐標方程為(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為.(2)由于,故可設,代入曲線直角坐標方程,可得,,所以.【題目點撥】本題考查了極坐標和直角坐標,參數(shù)方程和一般方程的互化以及極坐標的幾何意義的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.18、(1)(2)詳見解析(3)【解題分析】

試題分析:(1)當時,,由得減區(qū)間;(2)因為,所以,因為所以,方程有兩個不相等的實數(shù)根;(3)因為,,所以試題解析:(1)當時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實數(shù)根;(3)因為,,又在和增,在減,所以.考點:利用導數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關系19、(1)(2)當n為偶數(shù)時,;當n為奇數(shù)時,.(3)【解題分析】

(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數(shù)或偶數(shù)時的通項公式.也可利用數(shù)學歸納法,先猜想出通項公式,再用數(shù)學歸納法證明.(3)分類討論,當n為奇數(shù)或偶數(shù)時,分別求得的最大值,即可求得的取值范圍.【題目詳解】(1)由題意可知,.當時,,當時,也滿足上式.所以.(2)解法一:由(1)可知,即.當時,,①當時,,所以,②當時,,③當時,,所以,④……當時,n為偶數(shù)當時,n為偶數(shù)所以以上個式子相加,得.又,所以當n為偶數(shù)時,.同理,當n為奇數(shù)時,,所以,當n為奇數(shù)時,.解法二:猜測:當n為奇數(shù)時,.猜測:當n為偶數(shù)時,.以下用數(shù)學歸納法證明:,命題成立;假設當時,命題成立;當n為奇數(shù)時,,當時,n為偶數(shù),由得故,時,命題也成立.綜上可知,當n為奇數(shù)時同理,當n為偶數(shù)時,命題仍成立.(3)由(2)可知.①當n為偶數(shù)時,,所以隨n的增大而減小從而當n為偶數(shù)時,的最大值是.②當n為奇數(shù)時,,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數(shù)的取值范圍是.【題目點撥】本題考查了累加法求數(shù)列通項公式的應用,分類討論奇偶項的通項公式及求和方法,數(shù)學歸納法證明數(shù)列的應用,數(shù)列的單調性及參數(shù)的取值范圍,屬于難題.20、(1)().(2),.(3)【解題分析】

(1)依題意先求出,然后根據(jù),求出的通項公式為,再檢驗的情況即可;(2)由遞推公式,得,結合數(shù)列性質可得數(shù)列相鄰項之間的關系,從而可求出結果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數(shù)單調性可求的范圍,從而列不等式可解.【題目詳解】解:(1)因為數(shù)列滿足()①;②當時,.檢驗當時,成立.所以,數(shù)列的通項公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因為,所以,上式同除以,得,,即,所以,數(shù)列時首項為1,公差為1的等差數(shù)列,故,.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論