




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省泉州市德化一中2024屆高三下學期學業(yè)質量陽光指標調研數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等比數(shù)列的前項和為,若,則的值為()A. B. C. D.2.已知向量,若,則實數(shù)的值為()A. B. C. D.3.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或4.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.45.已知復數(shù)滿足,則()A. B. C. D.6.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種8.若集合,則=()A. B. C. D.9.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.8410.已知函數(shù),則()A.函數(shù)在上單調遞增 B.函數(shù)在上單調遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱11.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.12.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調查,將結果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結果相同,則的最小值為______.14.集合,,則_____.15.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)16.在《九章算術》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,內切球半徑為,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.18.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.19.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.20.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.21.(12分)在直角坐標系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.22.(10分)如圖,設A是由個實數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【題目詳解】設等比數(shù)列的公比為,,,,因此,.故選:C.【題目點撥】本題考查等比數(shù)列求和公式的應用,解答的關鍵就是求出等比數(shù)列的公比,考查計算能力,屬于基礎題.2、D【解題分析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數(shù)的值.【題目詳解】解:,,即,將和代入,得出,所以.故選:D.【題目點撥】本題考查了向量的數(shù)量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通??傻玫絻蓚€向量的數(shù)量積為0,繼而結合條件進行化簡、整理.3、D【解題分析】
根據(jù)正弦定理得到,化簡得到答案.【題目詳解】由,得,∴,∴或,∴或.故選:【題目點撥】本題考查了正弦定理解三角形,意在考查學生的計算能力.4、D【解題分析】
先用公差表示出,結合等比數(shù)列求出.【題目詳解】,因為成等比數(shù)列,所以,解得.【題目點撥】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關系是求解的關鍵.5、A【解題分析】
由復數(shù)的運算法則計算.【題目詳解】因為,所以故選:A.【題目點撥】本題考查復數(shù)的運算.屬于簡單題.6、D【解題分析】
根據(jù)面面平行的判定及性質求解即可.【題目詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【題目點撥】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.7、B【解題分析】
首先將五天進行分組,再對名著進行分配,根據(jù)分步乘法計數(shù)原理求得結果.【題目詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【題目點撥】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應用,易錯點是忽略分組中涉及到的平均分組問題.8、C【解題分析】
求出集合,然后與集合取交集即可.【題目詳解】由題意,,,則,故答案為C.【題目點撥】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.9、D【解題分析】
利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【題目詳解】,解得..故選:D【題目點撥】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.10、C【解題分析】
依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調性;【題目詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【題目點撥】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調性,屬于基礎題.11、D【解題分析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【題目詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【題目點撥】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.12、C【解題分析】
先根據(jù)直線與直線平行確定的值,進而即可確定結果.【題目詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【題目點撥】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、10【解題分析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【題目詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【題目點撥】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎題.14、【解題分析】
分析出集合A為奇數(shù)構成的集合,即可求得交集.【題目詳解】因為表示為奇數(shù),故.故答案為:【題目點撥】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.15、【解題分析】
根據(jù)組合的知識,結合組合數(shù)的公式,可得結果.【題目詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:【題目點撥】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.16、【解題分析】
該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內切球在側面內的正視圖是的內切圓,從而內切球半徑為,由此能求出.【題目詳解】四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側棱底面,且底面為正方形,內切球在側面內的正視圖是的內切圓,內切球半徑為,故.故答案為.【題目點撥】本題考查了幾何體外接球和內切球的相關問題,補形法的運用,以及數(shù)學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補形法(構造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】分析:(1)先斷定在曲線上,從而需要求,令,求得結果,注意復合函數(shù)求導法則,接著應用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導數(shù)研究函數(shù)的單調性,從而求得函數(shù)在相應區(qū)間上的最值.詳解:(Ⅰ)當,.,當,,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調遞減,因為,所以在上增,在單調遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關應用導數(shù)研究函數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復合函數(shù)求導,函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.18、(1)證明見解析;(2).【解題分析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【題目詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【題目點撥】本題考查證明線面垂直,解題時注意線面垂直與線線垂直的相互轉化.考查求二面角,求空間角一般是建立空間直角坐標系,用向量法易得結論.19、(1)(2)點的坐標為【解題分析】
將拋物線方程與圓方程聯(lián)立,消去得到關于的一元二次方程,拋物線與圓有四個交點需滿足關于的一元二次方程在上有兩個不等的實數(shù)根,根據(jù)二次函數(shù)的有關性質即可得到關于的不等式組,解不等式即可.不妨設拋物線與圓的四個交點坐標為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點坐標,再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達式,令,由及知,對關于的面積函數(shù)進行求導,判斷其單調性和最值,即可求出四邊形的面積取得最大值時的值,進而求出點坐標.【題目詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設方程的兩個根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯(lián)立方程可得,點的坐標為,因為四邊形為等腰梯形,所以,令,則,所以,因為,所以當時,;當時,,所以函數(shù)在上單調遞增,在上單調遞減,即當時,四邊形的面積取得最大值,因為,點的坐標為,所以當四邊形的面積取得最大值時,點的坐標為.【題目點撥】本題考查利用導數(shù)求函數(shù)的極值與最值、拋物線及其標準方程及直線與圓錐曲線相關的最值問題;考查運算求解能力、轉化與化歸能力和知識的綜合運用能力;利用函數(shù)的思想求圓錐曲線中面積的最值是求解本題的關鍵;屬于綜合型強、難度大型試題.20、(1)1;(2)【解題分析】
(1),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【題目詳解】(1)由題設,則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【題目點撥】本題主要考查余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數(shù)學運算能力,屬于中檔題.21、(1),(2)【解題分析】
先求出,再求圓的半徑和極坐標方程;(2)設求出,,再求出得解.【題目詳解】(1)將化成直角坐標方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極坐標方程,得.即圓M的極坐標方程為.(2)設,則,用代替.可得,【題目點撥】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五金專業(yè)知識培訓課件
- 小學班主任德育工作個人總結(28篇)
- 關于給校長的一封建議書(28篇)
- 教師安全心得體會
- 刑事申訴狀故意傷害
- 2025年宮頸癌放療并發(fā)癥的預防與管理
- 物流系統(tǒng)分析 課件 任務二 物流業(yè)務流程分析和診斷
- 藝術漆銷售知識培訓課件
- 2023年6月高考真題北京卷物理試卷-解析
- 2025年中考第一次模擬考試語文(西寧卷)(全解全析)
- 2024年山東化工職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 《新病歷書寫規(guī)范》課件
- 2024年中小學生守則修訂版
- 博覽會展位裝修及布展投標方案技術標
- 顧客提問的問題100條
- 肝膿腫教學查房課件
- 跳繩之雙腳跳教案
- 拇外翻護理課件
- 六年級英語教學隨筆5篇
- 讀書分享交流會《從一到無窮大》課件
- 醫(yī)療器械可用性工程文檔
評論
0/150
提交評論