2024屆河南省范縣第一中學(xué)高三第二次聯(lián)考考數(shù)學(xué)試題文試題_第1頁(yè)
2024屆河南省范縣第一中學(xué)高三第二次聯(lián)考考數(shù)學(xué)試題文試題_第2頁(yè)
2024屆河南省范縣第一中學(xué)高三第二次聯(lián)考考數(shù)學(xué)試題文試題_第3頁(yè)
2024屆河南省范縣第一中學(xué)高三第二次聯(lián)考考數(shù)學(xué)試題文試題_第4頁(yè)
2024屆河南省范縣第一中學(xué)高三第二次聯(lián)考考數(shù)學(xué)試題文試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河南省范縣第一中學(xué)高三第二次聯(lián)考考數(shù)學(xué)試題文試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.3.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.4.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱 B.關(guān)于點(diǎn)對(duì)稱C.周期為 D.在上是增函數(shù)5.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.6.在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有蒲生一日,長(zhǎng)三尺莞生一日,長(zhǎng)一尺蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)倍?”意思是:“今有蒲草第天長(zhǎng)高尺,蕪草第天長(zhǎng)高尺以后,蒲草每天長(zhǎng)高前一天的一半,蕪草每天長(zhǎng)高前一天的倍.問(wèn)第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長(zhǎng)所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.8.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.9.下列圖形中,不是三棱柱展開(kāi)圖的是()A. B. C. D.10.將3個(gè)黑球3個(gè)白球和1個(gè)紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種11.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B. C. D.12.已知數(shù)列中,,(),則等于()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.某外商計(jì)劃在個(gè)候選城市中投資個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過(guò)個(gè),則該外商不同的投資方案有____種.14.已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-1-x,則曲線y=f(x)15.現(xiàn)有一塊邊長(zhǎng)為a的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無(wú)蓋方盒,該方盒容積的最大值是________.16.已知關(guān)于的不等式對(duì)于任意恒成立,則實(shí)數(shù)的取值范圍為_(kāi)________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知拋物線:的焦點(diǎn)為,過(guò)上一點(diǎn)()作兩條傾斜角互補(bǔ)的直線分別與交于,兩點(diǎn),(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.19.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程;(2)在曲線上取一點(diǎn),直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),交曲線于點(diǎn),求的最大值.21.(12分)已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).22.(10分)某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】

化簡(jiǎn)復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對(duì)應(yīng)點(diǎn)所在象限,即可求得答案.【題目詳解】對(duì)應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【題目點(diǎn)撥】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.2、A【解題分析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【題目詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過(guò)E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長(zhǎng)為,則,四面體的外接球的半徑,球O的表面積為.故選A.【題目點(diǎn)撥】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.3、D【解題分析】

根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【題目詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【題目點(diǎn)撥】本題考查拋物線及雙曲線的方程及簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.4、D【解題分析】

當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).5、B【解題分析】

分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【題目詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【題目點(diǎn)撥】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.6、B【解題分析】

由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過(guò)此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過(guò)裂項(xiàng)的方法求的前項(xiàng)和,即可通過(guò)不等式來(lái)求解的取值范圍.【題目詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【題目點(diǎn)撥】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.7、C【解題分析】

由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長(zhǎng)度,進(jìn)而可得:,解出即可得出.【題目詳解】由題意可得莞草與蒲草第n天的長(zhǎng)度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【題目點(diǎn)撥】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.8、D【解題分析】

設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【題目詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【題目點(diǎn)撥】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、C【解題分析】

根據(jù)三棱柱的展開(kāi)圖的可能情況選出選項(xiàng).【題目詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開(kāi)圖.故選:C【題目點(diǎn)撥】本小題主要考查三棱柱展開(kāi)圖的判斷,屬于基礎(chǔ)題.10、D【解題分析】

采取分類計(jì)數(shù)和分步計(jì)數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開(kāi)始僅有兩個(gè)相同顏色的排在一起【題目詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時(shí)將紅球插入6個(gè)球組成的7個(gè)空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個(gè)相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時(shí)紅球只能插入兩個(gè)相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【題目點(diǎn)撥】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題11、C【解題分析】

首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【題目詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【題目點(diǎn)撥】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.12、A【解題分析】

分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問(wèn)題得以解決.【題目詳解】解:∵,(),

,

,

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

故選:A.【題目點(diǎn)撥】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解題分析】試題分析:每個(gè)城市投資1個(gè)項(xiàng)目有種,有一個(gè)城市投資2個(gè)有種,投資方案共種.考點(diǎn):排列組合.14、y=2x【解題分析】試題分析:當(dāng)x>0時(shí),-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識(shí)拓展】本題題型可歸納為“已知當(dāng)x>0時(shí),函數(shù)y=f(x),則當(dāng)x<0時(shí),求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時(shí),函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).15、【解題分析】

由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【題目詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、【解題分析】

先將不等式對(duì)于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【題目詳解】解:由題可知,不等式對(duì)于任意恒成立,即,又因?yàn)?,,?duì)任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時(shí)等號(hào)成立,又因?yàn)樵趦?nèi)有解,,則,即:,所以實(shí)數(shù)的取值范圍:.故答案為:.【題目點(diǎn)撥】本題考查不等式恒成立問(wèn)題,利用分離參數(shù)法和構(gòu)造函數(shù),通過(guò)求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ).【解題分析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據(jù)絕對(duì)值不等式的性質(zhì)可得,不等式對(duì)任意實(shí)數(shù)恒成立,等價(jià)于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當(dāng)時(shí),即,①當(dāng)時(shí),得,所以;②當(dāng)時(shí),得,即,所以;③當(dāng)時(shí),得成立,所以.故不等式的解集為.(Ⅱ)因?yàn)?,由題意得,則,解得,故的取值范圍是.18、(1)見(jiàn)解析;(2)【解題分析】

(1)設(shè),,由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達(dá)定理計(jì)算.【題目詳解】(1)在拋物線上,∴,設(shè),,由題可知,,∴,∴,∴,∴,∴(2)由(1)問(wèn)可設(shè)::,則,,,∴,∴,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,∴:.【題目點(diǎn)撥】本題考查直線與拋物線的位置關(guān)系的應(yīng)用,在處理直線與拋物線位置關(guān)系的問(wèn)題時(shí),通常要涉及韋達(dá)定理來(lái)求解,本題查學(xué)生的運(yùn)算求解能力,是一道中檔題.19、(1)答案不唯一,具體見(jiàn)解析(2)【解題分析】

(1)由于函數(shù),得出,分類討論當(dāng)和時(shí),的正負(fù),進(jìn)而得出的單調(diào)性;(2)求出,令,得,設(shè),通過(guò)導(dǎo)函數(shù),可得出在上的單調(diào)性和值域,再分類討論和時(shí),的單調(diào)性,再結(jié)合,恒成立,即可求出的取值范圍.【題目詳解】解:(1)因?yàn)?,所以,①?dāng)時(shí),,在上單調(diào)遞減.②當(dāng)時(shí),令,則;令,則,所以在單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.(2)因?yàn)?,可知,,令,?設(shè),則.當(dāng)時(shí),,在上單調(diào)遞增,所以在上的值域是,即.當(dāng)時(shí),沒(méi)有實(shí)根,且,在上單調(diào)遞減,,符合題意.當(dāng)時(shí),,所以有唯一實(shí)根,當(dāng)時(shí),,在上單調(diào)遞增,,不符合題意.綜上,,即的取值范圍為.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和根據(jù)恒成立問(wèn)題求參數(shù)范圍,還運(yùn)用了構(gòu)造函數(shù)法,還考查分類討論思想和計(jì)算能力,屬于難題.20、(1)(2)最大值為【解題分析】

(1)利用消去參數(shù),求得曲線的普通方程,再轉(zhuǎn)化為極坐標(biāo)方程.(2)設(shè)出兩點(diǎn)的坐標(biāo),求得的表達(dá)式,并利用三角恒等變換進(jìn)行化簡(jiǎn),再結(jié)合三角函數(shù)最值的求法,求得的最大值.【題目詳解】(1)由消去得曲線的普通方程為.所以的極坐標(biāo)方程為,即.(2)不妨設(shè),,,,,則當(dāng)時(shí),取得最大值,最大值為.【題目點(diǎn)撥】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,考查極坐標(biāo)系下線段長(zhǎng)度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.21、(1);(2);(3).【解題分析】

(1)利用導(dǎo)數(shù)的幾何意義計(jì)算即可;(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論