2023年新疆維吾爾自治區(qū)七校聯(lián)考數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第1頁
2023年新疆維吾爾自治區(qū)七校聯(lián)考數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第2頁
2023年新疆維吾爾自治區(qū)七校聯(lián)考數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第3頁
2023年新疆維吾爾自治區(qū)七校聯(lián)考數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第4頁
2023年新疆維吾爾自治區(qū)七校聯(lián)考數(shù)學九年級第一學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年新疆維吾爾自治區(qū)七校聯(lián)考數(shù)學九年級第一學期期末質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.“圓材埋壁”是我國古代著名的數(shù)學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數(shù)學語言表述是:“CD為的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為()A.12寸 B.13寸 C.24寸 D.26寸2.如圖,在平行四邊形中,為延長線上一點,且,連接交于,則△與△的周長之比為()A.9:4 B.4:9C.3:2 D.2:33.如圖,在△ABC中,BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,連接PM、PN、MN,則下列結(jié)論:①PM=PN;②;③若∠ABC=60°,則△PMN為等邊三角形;④若∠ABC=45°,則BN=PC.其中正確的是()A.①②③ B.①②④ C.①③④ D.②③④4.在中,點在線段上,請?zhí)砑右粋€條件使,則下列條件中一定正確的是()A. B.C. D.5.在一個不透明的布袋中裝有60個白球和若干個黑球,除顏色外其他都相同,小紅每次摸出一個球并放回,通過多次試驗后發(fā)現(xiàn),摸到黑球的頻率穩(wěn)定在0.6左右,則布袋中黑球的個數(shù)可能有()A.24 B.36 C.40 D.906.如圖,點在以為直徑的上,若,,則的長為()A.8 B.6 C.5 D.7.如圖,PA是⊙O的切線,切點為A,PO的延長線交⊙O于點B,若∠P=40°,則∠B的度數(shù)為()A.20° B.25° C.40° D.50°8.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.9.下列關系式中,y是x的反比例函數(shù)的是()A.y=4x B.=3 C.y=﹣ D.y=x2﹣110.如圖,AE是四邊形ABCD外接圓⊙O的直徑,AD=CD,∠B=50°,則∠DAE的度數(shù)為()A.70° B.65° C.60° D.55°二、填空題(每小題3分,共24分)11.如圖AC,BD是⊙O的兩條直徑,首位順次連接A,B,C,D得到四邊形ABCD,若AD=3,∠BAC=30°,則圖中陰影部分的面積是______.12.計算的結(jié)果是_______.13.如圖,已知圓周角∠ACB=130°,則圓心角∠AOB=______.14.如圖,在平面直角坐標系中,點的坐標分別是,,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________.15.如圖,點、、、在射線上,點、、、在射線上,且,.若和的面積分別為和,則圖中三個陰影三角形面積之和為___________.16.如圖,在中,,是三角形的角平分線,如果,,那么點到直線的距離等于___________.17.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為___________.18.在矩形中,點是邊上的一個動點,連接,過點作與點,交射線于點,連接,則的最小值是_____________三、解答題(共66分)19.(10分)小堯用“描點法”畫二次函數(shù)的圖像,列表如下:x…-4-3-2-1012…y…50-3-4-30-5…(1)由于粗心,小堯算錯了其中的一個y值,請你指出這個算錯的y值所對應的x=;(2)在圖中畫出這個二次函數(shù)的圖像;(3)當y≥5時,x的取值范圍是.20.(6分)如圖,在中,,以為直徑作交于于于.求證:是中點;求證:是的切線21.(6分)某工廠生產(chǎn)某種多功能兒童車,根據(jù)需要可變形為圖1的滑板車或圖2的自行車,已知前后車輪半徑相同,,,車桿與所成的,圖1中、、三點共線,圖2中的座板與地面保持平行.問變形前后兩軸心的長度有沒有發(fā)生變化?若不變,請寫出的長度;若變化,請求出變化量?(參考數(shù)據(jù):,,)22.(8分)有4張看上去無差別的卡片,上面分別寫著1,2,3,4.(1)一次性隨機抽取2張卡片,求這兩張卡片上的數(shù)字之和為奇數(shù)的概率;(2)隨機摸取1張后,放回并混在一起,再隨機抽取1張,求兩次取出的卡片上的數(shù)字之和等于4的概率.23.(8分)如圖,拋物線y=﹣x2+4x+m﹣4(m為常數(shù))與y軸交點為C,M(3,0)、N(0,﹣2)分別是x軸、y軸上的點.(1)求點C的坐標(用含m的代數(shù)式表示);(2)若拋物線與x軸有兩個交點A、B,是否存在這樣的m,使得線段AB=MN,若存在,求出m的值,若不存在,請說明理由;(3)若拋物線與線段MN有公共點,求m的取值范圍.24.(8分)如圖,中,,以為直徑作,交于點,交于點.(1)求證:.(2)若,求的度數(shù).25.(10分)如圖,平行四邊形中,,過點作于點,現(xiàn)將沿直線翻折至的位置,與交于點.(1)求證:;(2)若,,求的長.26.(10分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若則HQ=.(2)如圖2,折疊使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FM∥AC,求證:四邊形AEMF是菱形;(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得和相似?若存在,求出PQ的長;若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】連接AO,設直徑CD的長為寸,則半徑OA=OC=寸,然后利用垂徑定理得出AE,最后根據(jù)勾股定理進一步求解即可.【詳解】如圖,連接AO,設直徑CD的長為寸,則半徑OA=OC=寸,∵CD為的直徑,弦,垂足為E,AB=10寸,∴AE=BE=AB=5寸,根據(jù)勾股定理可知,在Rt△AOE中,,∴,解得:,∴,即CD長為26寸.【點睛】本題主要考查了垂徑定理與勾股定理的綜合運用,熟練掌握相關概念是解題關鍵.2、C【分析】由題意可證△ADF∽△BEF可得△ADF與△BEF的周長之比=,由可得,即可求出△ADF與△BEF的周長之比.【詳解】∵四邊形ABCD是平行四邊形,∴,AD=BC,∵∴即∵,∴△ADF∽△BEF∴△ADF與△BEF的周長之比=.故選:C.【點睛】本題考查了相似三角形的性質(zhì)和判定,平行四邊形的性質(zhì),利用相似三角形周長的比等于相似比求解是解本題的關鍵.3、B【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①正確;先證明△ABM∽△ACN,再根據(jù)相似三角形的對應邊成比例可判斷②正確;如果△PMN為等邊三角形,求得∠MPN=60°,推出△CPM是等邊三角形,得到△ABC是等邊三角形,而△ABC不一定是等邊三角形,故③錯誤;當∠ABC=45°時,∠BCN=45°,由P為BC邊的中點,得出BN=PB=PC,判斷④正確.【詳解】解:①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,∴,②正確;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN為等邊三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等邊三角形,∴∠ACB=60°,則△ABC是等邊三角形,而△ABC不一定是等邊三角形,故③錯誤;④當∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P為BC邊的中點,∴PN⊥BC,△BPN為等腰直角三角形∴BN=PB=PC,故④正確.故選:B.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟知直角三角形的性質(zhì)、等腰三角形的判定與性質(zhì)及相似三角形的性質(zhì).4、B【分析】根據(jù)相似三角形的判定方法進行判斷,要注意相似三角形的對應邊和對應角.【詳解】解:如圖,在中,∠B的夾邊為AB和BC,在中,∠B的夾邊為AB和BD,∴若要,則,即故選B.【點睛】此題主要考查的是相似三角形的判定,正確地判斷出相似三角形的對應邊和對應角是解答此題的關鍵.5、D【分析】設袋中有黑球x個,根據(jù)概率的定義列出方程即可求解.【詳解】設袋中有黑球x個,由題意得:=0.6,解得:x=90,經(jīng)檢驗,x=90是分式方程的解,則布袋中黑球的個數(shù)可能有90個.故選D.【點睛】此題主要考查概率的計算,解題的關鍵是根據(jù)題意設出未知數(shù)列方程求解.6、D【分析】根據(jù)直徑所對圓周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性質(zhì)解出即可.【詳解】∵AB是直徑,∴∠C=90°,∵∠A=30°,∴,.故選D.【點睛】本題考查圓周角的性質(zhì)及特殊直角三角形,關鍵在于熟記相關基礎知識.7、B【解析】連接OA,由切線的性質(zhì)可得∠OAP=90°,繼而根據(jù)直角三角形兩銳角互余可得∠AOP=50°,再根據(jù)圓周角定理即可求得答案.【詳解】連接OA,如圖:∵PA是⊙O的切線,切點為A,∴OA⊥AP,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=∠AOB=25°,故選B.【點睛】本題考查了切線的性質(zhì),圓周角定理,正確添加輔助線,熟練掌握切線的性質(zhì)定理是解題的關鍵.8、A【分析】根據(jù)應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.9、C【分析】根據(jù)反比例函數(shù)的定義逐一判斷即可.【詳解】A、y=4x是正比例函數(shù);B、=3,可以化為y=3x,是正比例函數(shù);C、y=﹣是反比例函數(shù);D、y=x2﹣1是二次函數(shù);故選:C.【點睛】本題考查反比例函數(shù)的定義,掌握反比例函數(shù)的定義是解題的關鍵.10、B【分析】連接OC、OD,利用圓心角、弧、弦的關系以及圓周角定理求得∠AOD=50°,然后根據(jù)的等腰三角形的性質(zhì)以及三角形內(nèi)角和定理即可求得∠DAE=65°.【詳解】解:連接OC、OD,∵AD=CD,∴,∴∠AOD=∠COD,∵∠AOC=2∠B=2×50°=100°,∴AOD=50°,∵OA=OD,∴∠DAO=∠ADO=,即∠DAE=65°,故選:B.【點睛】本題考查了圓中弦,弧,圓心角之間的關系,圓周角定理和三角形內(nèi)角和,解決本題的關鍵是正確理解題意,能夠熟練掌握圓心角,弧,弦之間的關系.二、填空題(每小題3分,共24分)11、【分析】首先證明△BOC是等邊三角形及△OBC≌△AOD(SAS),進而得出S△AOD=S△DOC=S△BOC=S△AOB,得到S陰=2?S扇形OAD,再利用扇形的面積公式計算即可;【詳解】解:∵AC是直徑,

∴∠ABC=∠ADC=90°,

∵∠BAC=30°,AD=3,

∴AC=2AD=6,∠ACB=60°,∴OA=OC=3,

∵OC=OB=OA=OD,

∴△OBC與△AOD是等邊三角形,

∴∠BOC=∠AOD=60°,∴△OBC≌△AOD(SAS)又∵O是AC,BD的中點,

∴S△AOD=S△DOC=S△BOC=S△AOB,

∴S陰=2?S扇形OAD=,故答案為:.【點睛】本題考查扇形的面積公式、解直角三角形、等邊三角形的判定和性質(zhì)等知識,解題的關鍵是學會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.12、【分析】根據(jù)分式的加減運算法則,先通分,再加減.【詳解】解:原式====.故答案為:.【點睛】本題考查了分式的加減運算,解題的關鍵是掌握運算法則和運算順序.13、100゜【分析】根據(jù)圓周角定理,由∠ACB=130°,得到它所對的圓心角∠α=2∠ACB=260°,用360°-260°即可得到圓心角∠AOB.【詳解】如圖,∵∠α=2∠ACB,而∠ACB=130°,∴∠α=260°,∴∠AOB=360°-260°=100°.故答案為100°.14、,【分析】先將A,B兩點的坐標代入,消去c可得出b=1-7a,c=10a,得出xM=-=,yM=.方法一:分以下兩種情況:①a>0,畫出示意圖,可得出yM=0,1或2,進而求出a的值;②a<0時,根據(jù)示意圖可得,yM=5,6或7,進而求出a的值;方法二:根據(jù)題意可知或7①,或7②,由①求出a的值,代入②中驗證取舍從而可得出a的值.【詳解】解:將A,B兩點的坐標代入得,,②-①得,3=21a+3b,∴b=1-7a,c=10a.∴原解析式可以化為:y=ax2+(1-7a)x+10a.∴xM=-=,yM=,方法一:①當a>0時,開口向上,∵二次函數(shù)經(jīng)過A,B兩點,且頂點中,x,y均為整數(shù),且,,畫出示意圖如圖①,可得0≤yM≤2,∴yM=0,1或2,當yM=0時,解得a=,不滿足xM為整數(shù)的條件,舍去;當yM=1時,解得a=1(a=不符合條件,舍去);當yM=2時,解得a=,符合條件.②a<0時,開口向下,畫出示意圖如圖②,根據(jù)題中條件可得,5≤yM≤7,只有當yM=5,a=-時,當yM=6,a=-1時符合條件.綜上所述,a的值為,.方法二:根據(jù)題意可得或7;或7③,∴當時,解得a=,不符合③,舍去;當時,解得a=,不符合③,舍去;當時,解得a=,符合③中條件;當時,解得a=1,符合③中條件;當時,解得a=-1,符合③中條件;當時,解得a=-,符合③中條件;當時,解得a=-,不符合③舍去;當時,解得a=-,不符合③舍去;綜上可知a的值為:,.故答案為:,【點睛】本題主要考查二次函數(shù)的解析式、頂點坐標以及函數(shù)圖像的整數(shù)點問題,掌握基本概念與性質(zhì)是解題的關鍵.15、【分析】由已知可證,從而得到,利用和等高,可求出,同理求出另外兩個三角形的面積,則陰影部分的面積可求.【詳解】∵,.∴∴∵和的面積分別為和∴∵和等高∴∴同理可得∴陰影部分的面積為故答案為42【點睛】本題主要考查相似三角形的判定及性質(zhì),掌握相似三角形的判定方法及所求三角形與已知三角形之間的關系是解題的關鍵.16、1【分析】作DE⊥AB于E,如圖,利用勾股定理計算出BC=5,再根據(jù)角平分線的性質(zhì)得DC=DE,然后利用面積法得到×5,從而可求出DE.【詳解】作DE⊥AB于E,如圖,

在Rt△ABC中,BC==5,

∵AD是三角形的角平分線,

∴DC=DE,

∵S△ACD+S△ABD=S△ABC,

∴×5,

∴DE=1,

即點D到直線AB的距離等于1.

故答案為1.【點睛】此題考查角平分線的性質(zhì),解題關鍵在于掌握角的平分線上的點到角的兩邊的距離相等.17、.【解析】⊙O是△ABC的外接圓,∠BAC=60°,;因為OB、OC是⊙O的半徑,所以OB=OC,所以=,在中,若⊙O的半徑OC為2,OB=OC=2,在中,BC="2"=【點睛】本題考查圓周角與圓心角、弦心距,要求考生熟悉圓周角與圓心角的關系,會求弦心距和弦長18、【分析】根據(jù)題意可點G在以AB為直徑的圓上,設圓心為H,當HGC在一條直線上時,CG的值最值,利用勾股定理求出CH的長,CG就能求出了.【詳解】解:點的運動軌跡為以為直徑的為圓心的圓弧。連結(jié)GH,CH,CG≥CH-GH,即CG=CH-GH時,也就是當三點共線時,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案為:【點睛】本題考查了矩形的性質(zhì)、勾股定理、三角形三邊的關系.CGH三點共線時CG最短是解決問題的關鍵.把動點轉(zhuǎn)化成了定點,問題就迎刃而解了..三、解答題(共66分)19、(1)2;(2)詳見解析;(3)或【分析】(1)由表格給出的信息可以看出,該函數(shù)的對稱軸為直線x=-1,則x=-4與x=2時應取值相同.(2)將表格中的x,y值看作點的坐標,分別在坐標系中描出這幾個點,用平滑曲線連接即可作出這個二次函數(shù)的圖象;(3)根據(jù)拋物線的對稱軸,開口方向,利用二次函數(shù)的對稱性判斷出x=-4或2時,y=5,然后寫出y≥5時,x的取值范圍即可.【詳解】解:(1)從表格可以看出,當x=-2或x=0時,y=-3,

可以判斷(-2,-3),(0,-3)是拋物線上的兩個對稱點,

(-1,-4)就是頂點,設拋物線頂點式y(tǒng)=a(x+1)2-4,

把(0,-3)代入解析式,-3=a-4,解得a=1,

所以,拋物線解析式為y=(x+1)2-4,

當x=-4時,y=(-4+1)2-4=5,

當x=2時,y=(2+1)2-4=5≠-5,

所以這個錯算的y值所對應的x=2;(2)描點、連線,如圖:(3)∵函數(shù)開口向上,當y=5時,x=-4或2,∴當y≥5時,由圖像可得:x≤-4或x≥2.【點睛】本題考查用待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的性質(zhì)、畫函數(shù)圖像、二次函數(shù)與不等式,解題的關鍵是正確分析表中的數(shù)據(jù).20、(1)詳見解析,(2)詳見解析【分析】(1)連接AD,利用等腰三角形三線合一即可證明是中點;(2)連接OD,通過三角形中位線的性質(zhì)得出,則有OD⊥DE,則可證明結(jié)論.【詳解】(1)連接AD.∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=DC,(2)連接OD.∵AO=BO,BD=DC,∴,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線.【點睛】本題主要考查等腰三角形三線合一和切線的判定,掌握等腰三角形三線合一和切線的判定方法是解題的關鍵.21、的長度發(fā)生了改變,減少了.【分析】根據(jù)圖形的特點構造直角三角形利用三角函數(shù)求出變化前BC與變化后的BC長度即可求解.【詳解】圖1:作DF⊥BC于F點,∵∴BF=EF=BDcos≈30×=18∴BC=2BF+CE圖2:作DF⊥BC于F點,由圖1可知∠DE’F=53°,∴∠DE’C=180°-∠DE’F=127°∵DE∥BC,∴∠E’DE=∠DE’F=53°根據(jù)題意可知DE’=DE,CE’=CE,連接CD,∴△DCE≌△DCE’∴∠DEC=∠DE’C=127°∴∠ECB=360°-∠DEC-∠DE’C-∠E’DE=53°,作EG⊥BC于G點∴BC=BF+FG+GC=BDcos+DE+CE∠ECB30×+30+40×=76-72=4cm,答:的長度發(fā)生了改變,減少了.【點睛】此題主要考查解直角三角形,解題的關鍵是熟知三角函數(shù)的運用.22、(1);(2).【分析】(1)先列出一次性隨機抽取2張卡片的所有可能的結(jié)果,再找出兩張卡片上的數(shù)字之和為奇數(shù)的結(jié)果,最后利用概率公式計算即可;(2)先列出兩次抽取卡片的所有可能的結(jié)果,再找出兩次取出的卡片上的數(shù)字之和等于4的結(jié)果,最后利用概率公式計算即可;【詳解】(1)由題意得:一次性隨機抽取2張卡片的所有可能的結(jié)果有6種,即,它們每一種出現(xiàn)的可能性相等從中可看出,兩張卡片上的數(shù)字之和為奇數(shù)的結(jié)果有4種,即故所求的概率為;(2)兩次抽取卡片的所有可能的結(jié)果有16種,列表如下:第一次第二次12341234它們每一種出現(xiàn)的可能性相等從中可看出,兩次取出的卡片上的數(shù)字之和等于4的結(jié)果有3種,即故所求的概率為.【點睛】本題考查了用列舉法求概率,依據(jù)題意正確列舉出事件的所有可能的結(jié)果是解題關鍵.23、(1)(0,m﹣4);(1)存在,m=;(3)﹣≤m≤1【分析】(1)由題意得:點C的坐標為:(0,m﹣4);(1)存在,理由:令y=0,則x=1,則AB=1MN,即可求解;(3)聯(lián)立拋物線與直線MN的表達式得:方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,即可求解.【詳解】(1)由題意得:點C的坐標為:(0,m﹣4);(1)存在,理由:令y=0,則x=1,則AB=1MN,解得:m;(3)∵M(3,0),N(0,﹣1),∴直線MN的解析式為yx﹣1.∵拋物線與線段MN有公共點,則方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,∴()1﹣4(﹣m+1)≥0,解得:m≤1.【點睛】本題考查了二次函數(shù)綜合運用,涉及到一次函數(shù)的性質(zhì)、解不等式、一元二次方程等,其中(3),確定△≥0,且m﹣4≤﹣1是解答本題的難點.24、(1)證明見解析;(2)80°【分析】(1)連接AD,根據(jù)圓周角定理和等腰三角形的三線合一,可得,利用相等的圓周角所對的弧相等即可得證;(2)連接BE,利用同弧所對的圓周角相等可得,再利用等腰三角形的性質(zhì)可求得利用圓周角定理即可求解.【詳解】解:(1)連接AD,,∵為的直徑,∴,即,∵在中,,∴,∴;(2)連接BE,,∵,∴,,∵,∴,∴的度數(shù)為.【點睛】本題考查圓周角定理,等腰三角形的性質(zhì),弧、弦、圓心角和圓周角之間的關系,熟練應用圓的基本性質(zhì)定理是解題的關鍵.25、(1)見解析;(2)【分析】(1)根據(jù)平行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論