版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆黑龍江省哈爾濱市道外區(qū)數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,在平面直角坐標(biāo)系中,已知點的坐標(biāo)是,點是曲線上的一個動點,作軸于點,當(dāng)點的橫坐標(biāo)逐漸減小時,四邊形的面積將會()A.逐漸增大 B.不變 C.逐漸減小 D.先減小后增大2.如圖,在中,點為邊中點,動點從點出發(fā),沿著的路徑以每秒1個單位長度的速度運動到點,在此過程中線段的長度隨著運動時間的函數(shù)關(guān)系如圖2所示,則的長為()A. B. C. D.3.如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是()A.①② B.②③ C.①③ D.①④4.如圖,AB為⊙O的直徑,CD為⊙O的弦,∠ACD=40°,則∠BAD的大小為()A.60o B.30o C.45o D.50o5.一元二次方程x2﹣2kx+k2﹣k+2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>26.若2y-7x=0,則x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶47.﹣的絕對值為()A.﹣2 B.﹣ C. D.18.已知,則下列比例式成立的是()A. B. C. D.9.如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果下面有三個推斷:①當(dāng)拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;③若再次用計算機模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③10.如圖,已知直線與軸交于點,與軸交于點,將沿直線翻折后,設(shè)點的對應(yīng)點為點,雙曲線經(jīng)過點,則的值為()A.8 B.6 C. D.二、填空題(每小題3分,共24分)11.如圖,在△ABC中,∠ACB=90°,AC=6,AB=1.現(xiàn)分別以點A、點B為圓心,以大于AB相同的長為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若將△BDE沿直線MN翻折得△B′DE,使△B′DE與△ABC落在同一平面內(nèi),連接B′E、B′C,則△B′CE的周長為_____.12.如圖,正方形ABOC與正方形EFCD的邊OC、CD均在x軸上,點F在AC邊上,反比例函數(shù)的圖象經(jīng)過點A、E,且,則________.13.如圖,在Rt△ABC中,∠BCA=90o,∠BAC=30o,BC=4,將Rt△ABC繞A點順時針旋轉(zhuǎn)90o得到Rt△ADE,則BC掃過的陰影面積為___.14.如圖:M為反比例函數(shù)圖象上一點,軸于A,時,______.15.如圖,正方形ABCO與正方形ADEF的頂點B、E在反比例函數(shù)的圖象上,點A、C、D在坐標(biāo)軸上,則點E的坐標(biāo)是_____.16.已知正方形ABCD的邊長為,分別以B、D為圓心,以正方形的邊長為半徑在正方形內(nèi)畫弧,得到如圖所示的陰影部分,若隨機向正方形ABCD內(nèi)投擲一顆石子,則石子落在陰影部分的概率為_____.(結(jié)果保留π)17.計算:cos45°=________________18.正的邊長為,邊長為的正的頂點與點重合,點分別在,上,將沿邊順時針連續(xù)翻轉(zhuǎn)(如圖所示),直至點第一次回到原來的位置,則點運動路徑的長為(結(jié)果保留)三、解答題(共66分)19.(10分)為增強中學(xué)生體質(zhì),籃球運球已列為銅陵市體育中考選考項目,某校學(xué)生不僅練習(xí)運球,還練習(xí)了投籃,下表是一名同學(xué)在罰球線上投籃的試驗結(jié)果,根據(jù)表中數(shù)據(jù),回答問題.投籃次數(shù)(n)50100150200250300500投中次數(shù)(m)286078104124153252(1)估計這名同學(xué)投籃一次,投中的概率約是多少?(精確到0.1)(2)根據(jù)此概率,估計這名同學(xué)投籃622次,投中的次數(shù)約是多少?20.(6分)如圖,直線y=mx與雙曲線y=相交于A、B兩點,A點的坐標(biāo)為(1,2)(1)求反比例函數(shù)的表達式;(2)根據(jù)圖象直接寫出當(dāng)mx>時,x的取值范圍;(3)計算線段AB的長.21.(6分)如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG(1)判斷CG與⊙O的位置關(guān)系,并說明理由;(2)求證:2OB2=BC?BF;(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.22.(8分)如圖,海南省三沙市一艘海監(jiān)船某天在黃巖島P附近海域由南向北巡航,某一時刻航行到A處,測得該島在北偏東30°方向,海監(jiān)船以20海里/時的速度繼續(xù)航行,2小時后到達B處,測得該島在北偏東75°方向,求此時海監(jiān)船與黃巖島P的距離BP的長.(結(jié)果精確到0.1海里,參考數(shù)據(jù):tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)23.(8分)如圖,某倉儲中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4m,B,C在同一水平面上.(1)求斜坡AB的水平寬度BC;(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5m,EF=2m.將貨柜沿斜坡向上運送,當(dāng)BF=3.5m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1m)24.(8分)已知關(guān)于x的一元二次方程.(1)求證:無論k取何值,方程總有兩個實數(shù)根;(2)若二次函數(shù)的圖象與軸兩個交點的橫坐標(biāo)均為整數(shù),且k為整數(shù),求k的值.25.(10分)如圖,已知Rt△ABO,點B在軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數(shù)的圖象經(jīng)過OA的中點C,交AB于點D.(1)求反比例函數(shù)的表達式;(2)求△OCD的面積;(3)點P是軸上的一個動點,請直接寫出使△OCP為直角三角形的點P坐標(biāo).26.(10分)已知二次函數(shù).用配方法將其化為的形式;在所給的平面直角坐標(biāo)系xOy中,畫出它的圖象.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】設(shè)點P的坐標(biāo),表示出四邊形OAPB的面積,由反比例函數(shù)k是定值,當(dāng)點P的橫坐標(biāo)逐漸減小時,四邊形OAPB的面積逐漸減?。驹斀狻奎cA(0,2),則OA=2,
設(shè)點,則,
,
∵為定值,
∴隨著點P的橫坐標(biāo)的逐漸減小時,四邊形AONP的面積逐漸減小
故選:C.【點睛】考查反比例函數(shù)k的幾何意義,用點的坐標(biāo)表示出四邊形的面積是解決問題的關(guān)鍵.2、C【分析】根據(jù)圖象和圖形的對應(yīng)關(guān)系即可求出CD的長,從而求出AD和AC,然后根據(jù)圖象和圖形的對應(yīng)關(guān)系和垂線段最短即可求出CP⊥AB時AP的長,然后證出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【詳解】解:∵動點從點出發(fā),線段的長度為,運動時間為的,根據(jù)圖象可知,當(dāng)=0時,y=2∴CD=2∵點為邊中點,∴AD=CD=2,CA=2CD=4由圖象可知,當(dāng)運動時間x=時,y最小,即CP最小根據(jù)垂線段最短∴此時CP⊥AB,如下圖所示,此時點P運動的路程DA+AP=所以此時AP=∵∠A=∠A,∠APC=∠ACB=90°∴△APC∽△ACB∴即解得:AB=在Rt△ABC中,BC=故選C.【點睛】此題考查的是根據(jù)函數(shù)圖象解決問題,掌握圖象和圖形的對應(yīng)關(guān)系、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.3、D【解析】試題解析:∵AE=AB,∴BE=2AE,由翻折的性質(zhì)得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正確;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②錯誤;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③錯誤;由翻折的性質(zhì),∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等邊三角形,故④正確;綜上所述,結(jié)論正確的是①④.故選D.考點:1.翻折變換(折疊問題);2.矩形的性質(zhì).4、D【分析】把∠DAB歸到三角形中,所以連結(jié)BD,利用同弧所對的圓周角相等,求出∠A的度數(shù),AB為直徑,由直徑所對圓周角為直角,可知∠DAB與∠B互余即可.【詳解】連結(jié)BD,∵同弧所對的圓周角相等,∴∠B=∠C=40o,∵AB為直徑,∴∠ADB=90o,∴∠DAB+∠B=90o,∴∠DAB=90o-40o=50o.故選擇:D.【點睛】本題考查圓周角問題,關(guān)鍵利用同弧所對圓周角轉(zhuǎn)化為三角形的內(nèi)角,掌握直徑所對圓周角為直角,會利用余角定義求角.5、D【分析】根據(jù)一元二次方程有兩個不相等的實數(shù)根,得△即可求解.【詳解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有兩個不相等的實數(shù)根,∴△解得k>2.故選D.【點睛】本題考查一元二次方程△與參數(shù)的關(guān)系,列不等式是解題關(guān)鍵.6、A【分析】由2y-7x=0可得2y=7x,再根據(jù)等式的基本性質(zhì)求解即可.【詳解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故選A.【點睛】比例的性質(zhì),根據(jù)等式的基本性質(zhì)2進行計算即可,是基礎(chǔ)題,比較簡單.7、C【解析】分析:根據(jù)絕對值的定義求解,第一步列出絕對值的表達式,第二步根據(jù)絕對值定義去掉這個絕對值的符號.詳解:﹣的絕對值為|-|=-(﹣)=.點睛:主要考查了絕對值的定義,絕對值規(guī)律總結(jié):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.8、C【分析】依據(jù)比例的性質(zhì),將各選項變形即可得到正確結(jié)論.【詳解】解:A.由可得,2y=3x,不合題意;B.由可得,2y=3x,不合題意;C.由可得,3y=2x,符合題意;D.由可得,3x=2y,不合題意;故選:C.【點睛】本題主要考查了比例的性質(zhì),解決問題的關(guān)鍵是掌握:內(nèi)項之積等于外項之積.9、B【分析】隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,據(jù)此進行判斷即可.【詳解】解:①當(dāng)拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,“正面向上”的概率不一定是0.47,故錯誤;②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,故正確;③若再次用計算機模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率不一定是0.1,故錯誤.故選:B.【點睛】本題考查了利用頻率估計概率,明確概率的定義是解題的關(guān)鍵.10、A【分析】作軸于,軸于,設(shè).依據(jù)直線的解析式即可得到點和點的坐標(biāo),進而得出,,再根據(jù)勾股定理即可得到,進而得出,即可得到的值.【詳解】解:作軸于,軸于,如圖,設(shè),當(dāng)時,,則,當(dāng)時,,解得,則,∵沿直線翻折后,點的對應(yīng)點為點,∴,,在中,,①在中,,②①-②得,把代入①得,解得,∴,∴,∴.故選A.【點睛】此題考查反比例函數(shù)圖象上點的坐標(biāo)特征,解題關(guān)鍵在于掌握反比例函數(shù)(為常數(shù),)的圖象是雙曲線,圖象上的點的橫縱坐標(biāo)的積是定值,即.二、填空題(每小題3分,共24分)11、3【分析】根據(jù)線段垂直平分線的性質(zhì)和折疊的性質(zhì)得點B′與點A重合,BE=AE,進而可以求解.【詳解】在△ABC中,∠ACB=90°,AC=6,AB=1.根據(jù)勾股定理,得:BC=2.連接AE,由作圖可知:MN是線段AB的垂直平分線,∴BE=AE,BD=AD,由翻折可知:點B′與點A重合,∴△B′CE的周長=AC+CE+AE=AC+CE+BE=AC+BC=6+2=3故答案為3.【點睛】本題主要考查垂直平分線的性質(zhì)定理和折疊的性質(zhì),通過等量代換把△B′CE的周長化為AC+BC的值,是解題的關(guān)鍵.12、6【分析】設(shè)正方形ABOC與正方形EFCD的邊長分別為m,n,根據(jù)S△AOE=S梯形ACDE+S△AOC-S△ADE,可求出m2=6,然后根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義即可求解.【詳解】設(shè)正方形ABOC與正方形EFCD的邊長分別為m,n,則OD=m+n,∵S△AOE=S梯形ACDE+S△AOC-S△ADE,∴,∴m2=6,∵點A在反比例函數(shù)的圖象上,∴k=m2=6,故答案為:6.【點睛】本題考查了正方形的性質(zhì),割補法求圖形的面積,反比例函數(shù)比例系數(shù)k的幾何意義,從反比例函數(shù)(k為常數(shù),k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標(biāo)原點為頂點的矩形的面積等于常數(shù).13、4π【分析】先利用含30度的直角三角形三邊的關(guān)系得到AB=2BC=8,AC=BC=,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠CAE=∠BAD=90°,然后根據(jù)扇形的面積公式,利用BC掃過的陰影面積=S扇形BAD-S△CAE進行計算.【詳解】解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC繞A點順時針旋轉(zhuǎn)90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC掃過的陰影面積=S扇形BAD-S△CAE=.故答案為:4π.【點睛】本題考查了扇形面積計算公式:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=(其中l(wèi)為扇形的弧長);求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.也考查了旋轉(zhuǎn)的性質(zhì).14、﹣1.【分析】根據(jù)反比例函數(shù)系數(shù)的幾何意義,由S△AOM=4,可可求出|k|=1,再由函數(shù)圖像過二、四象限可知k<0,,從而可求出k的值.【詳解】∵MA⊥y軸,∴S△AOM=|k|=4,∵k<0,∴k=﹣1.故答案為﹣1.【點睛】本題考查了反比例函數(shù)的幾何意義,一般的,從反比例函數(shù)(k為常數(shù),k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標(biāo)原點為頂點的矩形的面積等于常數(shù),以點P及點P的一個垂足和坐標(biāo)原點為頂點的三角形的面積等于.15、【分析】設(shè)點E的坐標(biāo)為,根據(jù)正方形的性質(zhì)得出點B的坐標(biāo),再將點E、B的坐標(biāo)代入反比例函數(shù)解析式求解即可.【詳解】設(shè)點E的坐標(biāo)為,且由圖可知則點B的坐標(biāo)為將點E、B的坐標(biāo)代入反比例函數(shù)解析式得:整理得:解得:或(不符合,舍去)故點E的坐標(biāo)為.【點睛】本題考查了反比例函數(shù)的定義與性質(zhì),利用正方形的性質(zhì)求出點B的坐標(biāo)是解題關(guān)鍵.16、【分析】先求出空白部分面積,進而得出陰影部分面積,再利用石子落在陰影部分的概率=陰影部分面積÷正方形面積,進而得出答案.【詳解】∵扇形ABC中空白面積=,∴正方形中空白面積=2×(2﹣)=4﹣π,∴陰影部分面積=2﹣(4﹣π)=π﹣2,∴隨機向正方形ABCD內(nèi)投擲一顆石子,石子落在陰影部分的概率=.故答案為:.【點睛】本題主要考查扇形的面積公式和概率公式,通過割補法,求出陰影部分面積,是解題的關(guān)鍵.17、1【分析】將cos45°=代入進行計算即可.【詳解】解:cos45°=故答案為:1.【點睛】此題考查的是特殊角的銳角三角函數(shù)值,掌握cos45°=是解決此題的關(guān)鍵.18、【解析】從圖中可以看出翻轉(zhuǎn)的第一次是一個120度的圓心角,半徑是1,所以弧長=,第二次是以點P為圓心,所以沒有路程,在BC邊上,第一次第二次同樣沒有路程,AC邊上也是如此,點P運動路徑的長為三、解答題(共66分)19、(1)約0.5;(2)估計這名同學(xué)投籃622次,投中的次數(shù)約是311次.【分析】(1)對于不同批次的定點投籃命中率往往誤差會比較大,為了減少誤差,我們經(jīng)常采用多批次計算求平均數(shù)的方法;
(2)投中的次數(shù)=投籃次數(shù)×投中的概率,依此列式計算即可求解.【詳解】解:(1)估計這名球員投籃一次,投中的概率約是;(2)622×0.5=311(次).故估計這名同學(xué)投籃622次,投中的次數(shù)約是311次.【點睛】本題考查頻率估計概率,解題的關(guān)鍵是掌握頻率估計概率.20、(1)反比例函數(shù)的表達式是y=;(2)當(dāng)mx>時,x的取值范圍是﹣1<x<0或x>1;(3)AB=2.【分析】(1)把A的坐標(biāo)代入反比例函數(shù)的解析式即可求出答案;(2)求出直線的解析式,解組成的方程組求出B的坐標(biāo),根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案;(3)根據(jù)A、B的坐標(biāo).利用勾股定理分別求出OA、OB,即可得出答案.【詳解】(1)把A(1,2)代入y=得:k=2,即反比例函數(shù)的表達式是y=;(2)把A(1,2)代入y=mx得:m=2,即直線的解析式是y=2x,解方程組得出B點的坐標(biāo)是(-1,-2),∴當(dāng)mx>時,x的取值范圍是-1<x<0或x>1;(3)過A作AC⊥x軸于C,∵A(1,2),∴AC=2,OC=1,由勾股定理得:AO=,同理求出OB=,∴AB=2.考點:反比例函數(shù)與一次函數(shù)的交點問題.21、(1)CG與⊙O相切,理由見解析;(1)見解析;(3)DE=1【解析】(1)連接CE,由AB是直徑知△ECF是直角三角形,結(jié)合G為EF中點知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根據(jù)OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,據(jù)此即可得證;(1)證△ABC∽△FBO得,結(jié)合AB=1BO即可得;(3)證ECD∽△EGC得,根據(jù)CE=3,DG=1.5知,解之可得.【詳解】解:(1)CG與⊙O相切,理由如下:如圖1,連接CE,∵AB是⊙O的直徑,∴∠ACB=∠ACF=90°,∵點G是EF的中點,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG與⊙O相切;(1)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO?AB=BC?BF,∵AB=1BO,∴1OB1=BC?BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=1∠F,又∵∠DCE=1∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴,∵CE=3,DG=1.5,∴,整理,得:DE1+1.5DE﹣9=0,解得:DE=1或DE=﹣4.5(舍),故DE=1.【點睛】本題是圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、切線的判定、相似三角形的判定與性質(zhì)及直角三角形的性質(zhì)等知識點.22、28.3海里【分析】過B作BD⊥AP于D,由已知條件求出AB=40,∠P=45°,在Rt△ABD中求出,在Rt△BDP中求出PB即可.【詳解】解:過B作BD⊥AP于D,由已知條件得:AB=20×2=40海里,∠P=75°-30°=45°,在Rt△ABD中,∵AB=40,∠A=30°,∴海里,在Rt△BDP中,∵∠P=45°,∴(海里).答:此時海監(jiān)船與黃巖島P的距離BP的長約為28.3海里.【點睛】此題主要考查解直角三角形的應(yīng)用-方向角問題,根據(jù)已知得出△PDB為等腰直角三角形是解題關(guān)鍵.23、(1)BC=8m;(2)點D離地面的高為4.5m.【分析】(1)根據(jù)坡度定義直接解答即可;(2)作DS⊥BC,垂足為S,且與AB相交于H.證出∠GDH=∠SBH,根據(jù),得到GH=1m,利用勾股定理求出DH的長,然后求出BH=5m,進而求出HS,然后得到DS.【詳解】(1)∵坡度為i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足為S,且與AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∵DG=EF=2m,∴GH=1m,∴DH=m,BH=BF+FH=3.5+(2.5-1)=5m,設(shè)HS=xm,則BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.24、(1)、證明過程見解析;(2)、±1.【分析】(1)、首先得出方程的根的判別式,然后利用配方法得出非負數(shù),從而得出答案;(2)、根據(jù)公式法得出方程的解,然后根據(jù)解為整數(shù)得出k的值.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療護理倫理與公共衛(wèi)生-洞察分析
- 5G時代下的工業(yè)互聯(lián)網(wǎng)與智能制造技術(shù)探討
- 辦公環(huán)境下的寶寶成長提升工作與學(xué)習(xí)效率
- 從生命科學(xué)到醫(yī)療技術(shù)的創(chuàng)新與發(fā)明探討
- 辦公室文化積極工作氛圍的營造
- 以繪本為媒介的親子溝通方法研究
- 2025石材切邊承包合同
- 健康飲食習(xí)慣在現(xiàn)代商業(yè)環(huán)境中的價值
- 2025年高性能石膏板市場分析報告
- 2021-2026年中國木材海運行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 國家開放大學(xué)《操作系統(tǒng)》形考任務(wù)1-3參考答案
- (課件)肝性腦病
- 機械手臂搬運加工流程控制
- 4海底巖石與鉆頭破巖海洋鉆井工程
- 眾辰變頻器說明書3400
- (優(yōu)選)離散元法及其應(yīng)用課件
- 腳手架計算書-
- 部編版八年級語文上冊《句子的成分》定稿課件
- 清華大學(xué)《大學(xué)物理》習(xí)題庫試題及答案09磁學(xué)習(xí)題
- 目標(biāo)成本限額指標(biāo)
- 最易懂的杰普遜航圖學(xué)習(xí)課件
評論
0/150
提交評論