版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古烏蘭察布集寧區(qū)2024年數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.黨的十九大報告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長點、形成新動能.共享經(jīng)濟(jì)是公眾將閑置資源通過社會化平臺與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對企業(yè)經(jīng)濟(jì)活躍度的影響,在四個不同的企業(yè)各取兩個部門進(jìn)行共享經(jīng)濟(jì)對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.2.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.3.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點成中心對稱4.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.5.已知復(fù)數(shù),,則()A. B. C. D.6.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.7.已知復(fù)數(shù)滿足,則=()A. B.C. D.8.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.9.已知集合,,則()A. B.C. D.10.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.11.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.12.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則______.14.已知向量滿足,,則______________.15.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實數(shù)λ的值是__.16.若,則=______,=______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設(shè)P為橢圓上一點,且OM+ON=t18.(12分)已知點P在拋物線上,且點P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準(zhǔn)線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.19.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個零點.20.(12分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.21.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.22.(10分)某中學(xué)準(zhǔn)備組建“文科”興趣特長社團(tuán),由課外活動小組對高一學(xué)生文科、理科進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機(jī)抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計,將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計男110女50總計(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果,故選D.2、B【解析】
設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.3、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關(guān)于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運算與求解能力,屬于基礎(chǔ)題.4、C【解析】
不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力.5、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負(fù)問題.6、D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.7、B【解析】
利用復(fù)數(shù)的代數(shù)運算法則化簡即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.8、A【解析】
是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標(biāo).9、C【解析】
求出集合,計算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.10、A【解析】
利用數(shù)列的遞推關(guān)系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項公式的求法,考查計算能力.11、B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計算最值,即可得出答案.12、B【解析】
根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運算可得結(jié)論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標(biāo)運算.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.14、1【解析】
首先根據(jù)向量的數(shù)量積的運算律求出,再根據(jù)計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數(shù)量積的運算,屬于基礎(chǔ)題.15、【解析】
根據(jù)平面向量的數(shù)量積運算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點睛】本題考查了單位向量和平面向量數(shù)量積的運算問題,是中檔題.16、10【解析】
①根據(jù)換底公式計算即可得解;②根據(jù)同底對數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數(shù)的基本運算,涉及換底公式和同底對數(shù)加法運算,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)x24+【解析】試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,討論直線MN的斜率是否存在,當(dāng)直線MN的斜率存在時,直線方程與橢圓方程聯(lián)立,消參,利用韋達(dá)定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標(biāo)準(zhǔn)方程為x2(2)由題意知,當(dāng)直線MN斜率存在時,設(shè)直線方程為y=k(x-1),M(x聯(lián)立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當(dāng)直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系.18、(1)(2)4【解析】
(1)將點P橫坐標(biāo)代入拋物線中求得點P的坐標(biāo),利用點P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計算的值即可.【詳解】(1)將點P橫坐標(biāo)代入中,求得,∴P(2,),,點P到準(zhǔn)線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準(zhǔn)線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應(yīng)用問題,考查轉(zhuǎn)化思想以及計算能力,是中檔題.19、見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時,f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個零點.顯然x∈(π,2π)時,?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時,f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點.因為f(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時,f(x)>1,即f(x)在(?∞,?π)上也沒有零點.故f(x)僅在,上各有一個零點,即f(x)在R上有且僅有兩個零點.20、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過作于,則可證平面,故為所求角,在中利用余弦定理計算,再計算.【詳解】解:(Ⅰ)因為,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因為,,,所以,從而.【點睛】本題考查了面面垂直的判定,考查直線與平面所成角的計算,屬于中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版知識產(chǎn)權(quán)反擔(dān)保保證合同書2篇
- 2025版土地抵押權(quán)抵押資產(chǎn)證券化合同模板3篇
- 設(shè)備監(jiān)理合同-《設(shè)備監(jiān)理合同管理》押題密卷2
- 土壤污染治理與農(nóng)業(yè)生態(tài)環(huán)境保護(hù)考核試卷
- 唇部護(hù)理產(chǎn)品的選擇與涂抹技巧考核試卷
- 2025年銷售部勞動合同加班時間規(guī)定范本2篇
- 2025年家政服務(wù)服務(wù)調(diào)整協(xié)議
- 2025年度木材行業(yè)綠色認(rèn)證及產(chǎn)品檢測服務(wù)合同范本4篇
- 2025年婚禮廣告合作協(xié)議
- 二零二五年度房地產(chǎn)項目納稅擔(dān)保及貸款擔(dān)保合同2篇
- 2024年安全教育培訓(xùn)試題附完整答案(奪冠系列)
- 神農(nóng)架研學(xué)課程設(shè)計
- 文化資本與民族認(rèn)同建構(gòu)-洞察分析
- 2025新譯林版英語七年級下單詞默寫表
- 《錫膏培訓(xùn)教材》課件
- 唯物史觀課件
- 2021-2022學(xué)年四川省成都市武侯區(qū)部編版四年級上冊期末考試語文試卷(解析版)
- 中國傳統(tǒng)文化服飾文化
- 大氣污染控制工程 第四版
- 淺析商務(wù)英語中模糊語言的語用功能
- 工程勘察資質(zhì)分級標(biāo)準(zhǔn)和工程設(shè)計資質(zhì)分級標(biāo)準(zhǔn)
評論
0/150
提交評論