版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖南省寧鄉(xiāng)一中高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知的頂點坐標(biāo)為,,,則邊上的中線的長為()A. B. C. D.2.圓與圓的位置關(guān)系是()A.相離 B.相交 C.相切 D.內(nèi)含3.在中,已知角的對邊分別為,若,,,,且,則的最小角的余弦值為()A. B. C. D.4.已知等差數(shù)列an的前n項和為Sn,若S1=1,A.32 B.54 C.5.若點在點的北偏東70°,點在點的南偏東30°,且,則點在點的()方向上.A.北偏東20° B.北偏東30° C.北偏西30° D.北偏西15°6.如圖,長方體的體積為,E為棱上的點,且,三棱錐E-BCD的體積為,則=()A. B. C. D.7.已知函數(shù)f(x)=2x+log2x,且實數(shù)a>b>c>0,滿足A.x0<a B.x0>a8.函數(shù)的單調(diào)增區(qū)間是()A. B.C. D.9.設(shè)等比數(shù)列的前項和為,且,則()A. B. C. D.10.在中,角的對邊分別為.若,,,則邊的大小為()A.3 B.2 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是以為首項,為公差的等差數(shù)列,是其前項和,則數(shù)列的最小項為第___項12.正方體中,異面直線和所成角的余弦值是________.13.若把寫成的形式,則______.14.已知函數(shù)fx=cosx+2cosx,15.若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值為________.16.在中,,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.“我將來要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對的角為,中邊所對的角為,經(jīng)測量已知,.(1)霍爾頓發(fā)現(xiàn)無論多長,為一個定值,請你驗證霍爾頓的結(jié)論,并求出這個定值;(2)霍爾頓發(fā)現(xiàn)麥田的生長于土地面積的平方呈正相關(guān),記與的面積分別為和,為了更好地規(guī)劃麥田,請你幫助霍爾頓求出的最大值.18.已知向量滿足,且向量與的夾角為.(1)求的值;(2)求.19.已知向量.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的的集合.20.已知數(shù)列滿足,();(1)求、、;(2)猜想數(shù)列的通項公式;(3)用數(shù)學(xué)歸納法證明你的猜想;21.如右圖,某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為nmile,在A處看燈塔C在貨輪的北偏西30°,距離為nmile,貨輪由A處向正北航行到D處時,再看燈塔B在北偏東120°,求:(1)A處與D處的距離;(2)燈塔C與D處的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
利用中點坐標(biāo)公式求得,再利用兩點間距離公式求得結(jié)果.【題目詳解】由,可得中點又本題正確選項:【題目點撥】本題考查兩點間距離公式的應(yīng)用,關(guān)鍵是能夠利用中點坐標(biāo)公式求得中點坐標(biāo).2、B【解題分析】
計算圓心距,判斷與半徑和差的關(guān)系得到位置關(guān)系.【題目詳解】圓心距相交故答案選B【題目點撥】本題考查了兩圓的位置關(guān)系,判斷圓心距與半徑和差的關(guān)系是解題的關(guān)鍵.3、D【解題分析】
利用余弦定理求出和的表達(dá)式,由,結(jié)合正弦定理得出的表達(dá)式,利用余弦定理得出的表達(dá)式,可解出的值,于此確定三邊長,再利用大邊對大角定理得出為最小角,從而求出.【題目詳解】,由正弦定理,即,,,,解得,由大邊對大角定理可知角是最小角,所以,,故選D.【題目點撥】本題考查正弦定理和余弦定理的應(yīng)用,考查大邊對大角定理,在解題時,要充分結(jié)合題中的已知條件選擇正弦定理和余弦定理進(jìn)行求解,考查計算能力,屬于中等題.4、C【解題分析】
利用前n項和Sn的性質(zhì)可求S【題目詳解】設(shè)Sna+b=116a+4b=16a+8b,故a=1b=0,故S6【題目點撥】一般地,如果an為等差數(shù)列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn5、A【解題分析】
作出方位角,根據(jù)等腰三角形的性質(zhì)可得.【題目詳解】如圖,,,則,∵,∴,而,∴∴點在點的北偏東20°方向上.故選:A.【題目點撥】本題考查方位角概念,掌握方位角的定義是解題基礎(chǔ).方位角是以南北向為基礎(chǔ),北偏東,北偏西,南偏東,南偏西等等.6、D【解題分析】
分別求出長方體和三棱錐E-BCD的體積,即可求出答案.【題目詳解】由題意,,,則.故選D.【題目點撥】本題考查了長方體與三棱錐的體積的計算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.7、D【解題分析】
由函數(shù)的單調(diào)性可得:當(dāng)x0<c時,函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【題目詳解】因為函數(shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負(fù)數(shù)的個數(shù)為奇數(shù),對于選項A,B,C選項可能成立,對于選項D,當(dāng)x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項D不可能成立,故選:D.【題目點撥】本題考查了函數(shù)的單調(diào)性,屬于中檔題.8、D【解題分析】
化簡函數(shù)可得y=2sin(2x),把“2x”作為一個整體,再根據(jù)正弦函數(shù)的單調(diào)增區(qū)間,求出x的范圍,即是所求函數(shù)的增區(qū)間.【題目詳解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函數(shù)的單調(diào)增區(qū)間是[kπ,kπ](k∈z),故選D.【題目點撥】本題考查了正弦函數(shù)的單調(diào)性應(yīng)用,一般的做法是利用整體思想,根據(jù)正弦函數(shù)(余弦函數(shù))的性質(zhì)進(jìn)行求解.9、C【解題分析】
由,,聯(lián)立方程組,求出等比數(shù)列的首項和公比,然后求.【題目詳解】解:若,則,顯然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故選:C.【題目點撥】本題主要考查等比數(shù)列的前項和公式的應(yīng)用,要求熟練掌握,特別要注意對公比是否等于1要進(jìn)行討論,屬于基礎(chǔ)題.10、A【解題分析】
直接利用余弦定理可得所求.【題目詳解】因為,所以,解得或(舍).故選A.【題目點撥】本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了一元二次方程的解法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
先求,利用二次函數(shù)性質(zhì)求最值即可【題目詳解】由題當(dāng)時最小故答案為8【題目點撥】本題考查等差數(shù)列的求和公式,考查二次函數(shù)求最值,是基礎(chǔ)題12、【解題分析】
由,可得異面直線和所成的角,利用直角三角形的性質(zhì)可得結(jié)果.【題目詳解】因為,所以異面直線和所成角,設(shè)正方體的棱長為,則直角三角形中,,,故答案為.【題目點撥】本題主要考查異面直線所成的角,屬于中檔題題.求異面直線所成的角的角,先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質(zhì)及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結(jié)果一定要取絕對值.13、【解題分析】
將角度化成弧度,再用象限角的表示方法求解即可.【題目詳解】解:.故答案為:.【題目點撥】本題考查弧度與角度的互化,象限角的表示,屬于基礎(chǔ)題.14、(0,1)【解題分析】
畫出函數(shù)f(x)在x∈0,2【題目詳解】解:畫出函數(shù)y=cosx+2|cosx|=3cos以及直線y=k的圖象,如圖所示;由f(x)的圖象與直線y=k有且僅有四個不同的交點,可得0<k<1.故答案為:(0,1).【題目點撥】本題主要考查利用分段函數(shù)及三角函數(shù)的性質(zhì)求參數(shù),數(shù)形結(jié)合是解題的關(guān)鍵.15、-3【解題分析】試題分析:由兩直線平行可得:,經(jīng)檢驗可知時兩直線重合,所以.考點:直線平行的判定.16、【解題分析】
由已知求得,進(jìn)一步求得,即可求出.【題目詳解】由,得,即,,則,,,則.【題目點撥】本題主要考查應(yīng)用兩角和的正切公式作三角函數(shù)的恒等變換與化簡求值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)在和中分別對使用余弦定理,可推出與的關(guān)系,即可得出是一個定值;(2)求出的表達(dá)式,利用二次函數(shù)的基本性質(zhì)以及余弦函數(shù)值的取范圍,可得出的最大值.【題目詳解】(1)在中,由余弦定理得,在中,由余弦定理得,,則,;(2),,則,由(1)知:,代入上式得:,配方得:,當(dāng)時,取到最大值.【題目點撥】本題考查余弦定理的應(yīng)用、三角形面積的求法以及二次函數(shù)最值的求解,解題的關(guān)鍵就是利用題中結(jié)論將問題轉(zhuǎn)化為二次函數(shù)來求解,考查運算求解能力,屬于中等題.18、(1)(2)【解題分析】
(1)根據(jù),得到,再由題中數(shù)據(jù),即可求出結(jié)果;(2)根據(jù)向量數(shù)量積的運算法則,以及(1)的結(jié)果,即可得出結(jié)果.【題目詳解】解:(1)因為,所以,即.因為,且向量與的夾角為,所以,即.(2)由(1)可得.【題目點撥】本題主要考查平面向量的數(shù)量積,熟記模的計算公式,以及向量數(shù)量積的運算法則即可,屬于常考題型.19、(1),值域為(2)【解題分析】
(1)根據(jù)向量的數(shù)量積,得到函數(shù)解析式,再根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果;(2)先由題意,將不等式化為,結(jié)合正弦函數(shù)的性質(zhì),即可得出結(jié)果.【題目詳解】解:(1),由,得,,,在區(qū)間上的值域為(2)由,得,即所以解得,的解集為【題目點撥】本題主要考查正弦型函數(shù)的值域,以及三角不等式,熟記正弦函數(shù)的性質(zhì)即可,屬于??碱}型.20、(1),,;(2);(3)證明見解析;【解題分析】
(1)根據(jù)數(shù)列的遞推關(guān)系式,代入運算,即可求解、、;(2)由(1)可猜想得;(3)利用數(shù)學(xué)歸納法,即可證得猜想是正確的.【題目詳解】(1)由題意,數(shù)列滿足,();所以,,;(2)由(1)可猜想得;(3)①當(dāng)時,,上式成立;②假設(shè)當(dāng)時,成立,則當(dāng)時,由①②可得,當(dāng)時,成立,即數(shù)列的通項公式為.【題目點撥】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,以及數(shù)學(xué)歸納法的證明,其中解答中根據(jù)數(shù)列的遞推公式,準(zhǔn)確計算,同時熟記數(shù)學(xué)歸納法的證明方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.21、(1)24;(2)8【解題分析】
(1)利用已知條件,利用正弦定理求得AD的長.(2)在△ADC中由余弦定理可求得CD,答案可得.【題目詳解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版工程機械設(shè)備租賃與技術(shù)創(chuàng)新服務(wù)合同3篇
- 二零二五版護(hù)林員勞動合同書編制指南3篇
- 二零二五版按揭購房合同:智能家居系統(tǒng)智能家居系統(tǒng)節(jié)能改造合同3篇
- 二零二五年度游戲公司代運營及運營支持合同3篇
- 二零二五版包雪服務(wù)項目風(fēng)險評估與預(yù)案合同3篇
- 二零二五年度餐飲配送企業(yè)食品安全責(zé)任追究合同3篇
- 二零二五版海洋工程高低壓配電系統(tǒng)安裝合同2篇
- 二零二五版小微企業(yè)貸款合同與信用增級服務(wù)協(xié)議3篇
- 二零二五年度海洋工程設(shè)備采購合同15篇
- 二零二五年黃豆種植戶風(fēng)險管理采購合同3篇
- MT/T 199-1996煤礦用液壓鉆車通用技術(shù)條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學(xué)性能試驗第1部分:桌類強度和耐久性
- 第三方在線糾紛解決機制(ODR)述評,國際商法論文
- 公寓de全人物攻略本為個人愛好而制成如需轉(zhuǎn)載注明信息
- 第5章-群體-團(tuán)隊溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團(tuán)南部區(qū)域養(yǎng)護(hù)標(biāo)準(zhǔn)圖例
- 排水許可申請表
- 低血糖的觀察和護(hù)理課件
評論
0/150
提交評論