2024屆上海市虹口高級中學高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆上海市虹口高級中學高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆上海市虹口高級中學高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆上海市虹口高級中學高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆上海市虹口高級中學高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆上海市虹口高級中學高一數(shù)學第二學期期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設向量,滿足,,則()A.1 B.2 C.3 D.52.在中,,則等于()A. B. C. D.3.已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16 B.14 C.12 D.104.設滿足約束條件則的最大值為().A.10 B.8 C.3 D.25.的值為()A. B. C. D.6.若正數(shù)滿足,則的最小值為A. B.C. D.37.已知向量=(2,tan),=(1,-1),∥,則=()A.2 B.-3 C.-1 D.-38.若點(m,n)在反比例函數(shù)y=的圖象上,其中m<0,則m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣29.兩圓和的位置關(guān)系是()A.相離 B.相交 C.內(nèi)切 D.外切10.已知,所在平面內(nèi)一點P滿足,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)________12.在中,若,點,分別是,的中點,則的取值范圍為___________.13.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.14.如圖是一個算法流程圖.若輸出的值為4,則輸入的值為______________.15.下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結(jié)論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當直線BQ與AP所成角最小時,其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號)16.已知a,b,x均為正數(shù),且a>b,則____(填“>”、“<”或“=”).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,是一個矩形花壇,其中米,米.現(xiàn)將矩形花壇擴建成一個更大的矩形花壇,要求:在上,在上,對角線過點,且矩形的面積小于150平方米.(1)設長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;(2)當?shù)拈L度是多少時,矩形的面積最???并求最小面積.18.某校從高一年級的一次月考成績中隨機抽取了50名學生的成績(滿分100分,且抽取的學生成績都在內(nèi)),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.(1)用分層抽樣的方法從月考成績在內(nèi)的學生中抽取6人,求分別抽取月考成績在和內(nèi)的學生多少人;(2)在(1)的前提下,從這6名學生中隨機抽取2名學生進行調(diào)查,求月考成績在內(nèi)至少有1名學生被抽到的概率.19.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)20.為了解人們對某種食材營養(yǎng)價值的認識程度,某檔健康養(yǎng)生電視節(jié)目組織名營養(yǎng)專家和名現(xiàn)場觀眾各組成一個評分小組,給食材的營養(yǎng)價值打分(十分制).下面是兩個小組的打分數(shù)據(jù):第一小組第二小組(1)求第一小組數(shù)據(jù)的中位數(shù)與平均數(shù),用這兩個數(shù)字特征中的哪一種來描述第一小組打分的情況更合適?說明你的理由.(2)你能否判斷第一小組與第二小組哪一個更像是由營養(yǎng)專家組成的嗎?請比較數(shù)字特征并說明理由.(3)節(jié)目組收集了烹飪該食材的加熱時間:(單位:)與其營養(yǎng)成分保留百分比的有關(guān)數(shù)據(jù):食材的加熱時間(單位:)營養(yǎng)成分保留百分比在答題卡上畫出散點圖,求關(guān)于的線性回歸方程(系數(shù)精確到),并說明回歸方程中斜率的含義.附注:參考數(shù)據(jù):,.參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:,.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

將等式進行平方,相加即可得到結(jié)論.【題目詳解】∵||,||,∴分別平方得2?10,2?6,兩式相減得4?10﹣6=4,即?1,故選A.【題目點撥】本題主要考查向量的基本運算,利用平方進行相加是解決本題的關(guān)鍵,比較基礎.2、D【解題分析】

先根據(jù)向量的夾角公式計算出的值,然后再根據(jù)同角的三角函數(shù)的基本關(guān)系即可求解出的值.【題目詳解】因為,所以,所以,所以.故選:D.【題目點撥】本題考查坐標形式下向量的夾角計算,難度較易.注意:的夾角并不是,而應是的補角.3、A【解題分析】設,直線的方程為,聯(lián)立方程,得,∴,同理直線與拋物線的交點滿足,由拋物線定義可知,當且僅當(或)時,取等號.點睛:對于拋物線弦長問題,要重點抓住拋物線定義,到定點的距離要想到轉(zhuǎn)化到準線上,另外,直線與拋物線聯(lián)立,求判別式,利用根與系數(shù)的關(guān)系是通法,需要重點掌握.考查最值問題時要能想到用函數(shù)方法和基本不等式進行解決.此題還可以利用弦長的傾斜角表示,設直線的傾斜角為,則,則,所以.4、B【解題分析】

作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)即可求解.【題目詳解】作出可行域如圖:化目標函數(shù)為,聯(lián)立,解得.由圖象可知,當直線過點A時,直線在y軸上截距最小,有最大值.【題目點撥】本題主要考查了簡單的線性規(guī)劃,數(shù)形結(jié)合的思想,屬于中檔題.5、B【解題分析】由誘導公式可得,故選B.6、A【解題分析】

由,利用基本不等式,即可求解,得到答案.【題目詳解】由題意,因為,則,當且僅當,即時等號成立,所以的最小值為,故選A.【題目點撥】本題主要考查了利用基本不等式求最小值問題,其中解答中合理構(gòu)造,利用基本不是準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.7、B【解題分析】

通過向量平行得到的值,再利用和差公式計算【題目詳解】向量=(2,tan),=(1,-1),∥故答案選B【題目點撥】本題考查了向量的平行,三角函數(shù)和差公式,意在考查學生的計算能力.8、C【解題分析】

根據(jù)題意可得出,再根據(jù)可得,將添上兩個負號運用基本不等式,即可求解.【題目詳解】由題意,可得,因為,所以,所以,當且僅當,即時,等號成立,故選:C.【題目點撥】本題主要考查了基本不等式的應用,其中解答中熟記基本不等式的使用條件,合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.9、B【解題分析】

由圓的方程可得兩圓圓心坐標和半徑;根據(jù)圓心距和半徑之間的關(guān)系,即可判斷出兩圓的位置關(guān)系.【題目詳解】由圓的方程可知,兩圓圓心分別為:和;半徑分別為:,則圓心距:兩圓位置關(guān)系為:相交本題正確選項:【題目點撥】本題考查圓與圓位置關(guān)系的判定;關(guān)鍵是明確兩圓位置關(guān)系的判定是根據(jù)圓心距與兩圓半徑之間的長度關(guān)系確定.10、D【解題分析】

由平面向量基本定理及單位向量可得點在的外角平分線上,且點在的外角平分線上,,,在中,由正弦定理得得解.【題目詳解】因為所以,因為方向為外角平分線方向,所以點在的外角平分線上,同理,點在的外角平分線上,,,在中,由正弦定理得,故選:.【題目點撥】本題考查了平面向量基本定理及單位向量,考查向量的應用,意在考查學生對這些知識的理解掌握水平.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由共軛復數(shù)的概念得答案.【題目詳解】由z=i(2﹣i)=1+2i,得.故答案為1﹣2i.【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,考查共軛復數(shù)的基本概念,是基礎題.12、【解題分析】

記,,,根據(jù)正弦定理得到,再由題意,得到,,推出,再由題意,確定的范圍,即可得出結(jié)果.【題目詳解】記,,,由得,所以,即,因此,因為,分別是,的中點,所以,同理:,所以,因為且,所以,則,所以,則,所以.即的取值范圍為.故答案為【題目點撥】本題主要考查解三角形,熟記正弦定理,以及兩角和的正弦公式即可,屬于常考題型.13、0.9【解題分析】

先計算,再計算【題目詳解】故答案為0.9【題目點撥】本題考查了互斥事件的概率計算,屬于基礎題型.14、-1【解題分析】

對的范圍分類,利用流程圖列方程即可得解.【題目詳解】當時,由流程圖得:令,解得:,滿足題意.當時,由流程圖得:令,解得:,不滿足題意.故輸入的值為:【題目點撥】本題主要考查了流程圖知識,考查分類思想及方程思想,屬于基礎題.15、①③【解題分析】

由①可知只需求點A到面的最大值對于②,求直線PB與平面PAQ所成角的最大值,可轉(zhuǎn)化為到軸截面距離的最大值問題進行求解對于③④,可采用建系法進行分析【題目詳解】選項①如圖所示,當時,四棱錐體積最大,選項②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項③和④,如圖所示:以垂直于方向為x軸,方向為y軸,方向為z軸,其中設,.,設直線BQ與AP所成角為,,當時,取到最大值,,此時,由于,,,所以取不到答案選①、③【題目點撥】幾何體的旋轉(zhuǎn)問題需要結(jié)合動態(tài)圖形和立體幾何基本知識進行求解,需找臨界點是正確解題的關(guān)鍵,遇到難以把握的最值問題,可采用建系法進行求解.16、<【解題分析】

直接利用作差比較法解答.【題目詳解】由題得,因為a>0,x+a>0,b-a<0,x>0,所以所以.故答案為<【題目點撥】本題主要考查作差比較法,意在考查學生對這些知識的理解掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2),.【解題分析】

(1)由可得,,∴.由,且,解得,∴函數(shù)的定義域為.(2)令,則,,當且僅當時,取最小值,故當?shù)拈L度為米時,矩形花壇的面積最小,最小面積為96平方米.考點:1.分式不等式;2.均值不等式.18、(1)有4人,有2人;(2)【解題分析】

(1)由頻率分布直方圖,求出成績在和內(nèi)的頻率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出從這6名學生中隨機抽取2名學生的所有不同取法,再求出被抽到的學生至少有1名月考成績在內(nèi)的不同取法,再求解即可.【題目詳解】解:(1)因為,所以,則月考成績在內(nèi)的學生有人;月考成績在內(nèi)的學生有人,則成績在和內(nèi)的頻率的比值為,故用分層抽樣的方法從月考成績在內(nèi)的學生中抽取4人,從月考成績在內(nèi)的學生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成績在內(nèi),分別記為,,,;有2人的月考成績在內(nèi),分別記為,.則從這6名學生中隨機抽取2名學生的情況為,,,,,,,,,,,,,,,共15種;被抽到的學生至少有1名月考成績在內(nèi)的情況為,,,,,,,,,共9種.故月考成績內(nèi)至少有1名學生被抽到的概率為.【題目點撥】本題考查了分層抽樣,重點考查了古典概型概率的求法,屬中檔題.19、(1);(2);(3)線性回歸方程是可靠的.【解題分析】

(1)用列舉法求出基本事件數(shù),計算所求的概率值;(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;(3)利用回歸方程計算與8時的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結(jié)論.【題目詳解】解:(1)設“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數(shù)據(jù)求得,,且,.代入公式得:,.線性回歸方程為:;(3)當時,,,當時,,.故得到的線性回歸方程是可靠的.【題目點撥】本題考查了線性回歸方程的求法與應用問題,考查古典概型的概率計算問題,屬于中檔題.20、(1)中位數(shù)為,平均數(shù)為,中位數(shù)更適合描述第一小組打分的情況;(2)由可知第二小組的打分人員更像是由營養(yǎng)專家組成;(3)散點圖見解析;回歸直線為:;的含義:該食材烹飪時間每加熱多分鐘,則其營養(yǎng)成分大約會減少.【解題分析】

(1)將第一小組打分按從小到大排序,根據(jù)中位數(shù)和平均數(shù)的計算方法求得中位數(shù)和平均數(shù);由于存在極端數(shù)據(jù),可知中位數(shù)更適合描述第一小組打分情況;(2)分別計算兩組數(shù)據(jù)的方差,由可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論