江西省上饒市2024屆數(shù)學高一第二學期期末調(diào)研模擬試題含解析_第1頁
江西省上饒市2024屆數(shù)學高一第二學期期末調(diào)研模擬試題含解析_第2頁
江西省上饒市2024屆數(shù)學高一第二學期期末調(diào)研模擬試題含解析_第3頁
江西省上饒市2024屆數(shù)學高一第二學期期末調(diào)研模擬試題含解析_第4頁
江西省上饒市2024屆數(shù)學高一第二學期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省上饒市2024屆數(shù)學高一第二學期期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓C:x2+yA.2 B.3 C.1 D.22.某學校從編號依次為01,02,…,72的72個學生中用系統(tǒng)抽樣(等間距抽樣)的方法抽取一個樣本,已知樣本中相鄰的兩個組的編號分別為12,21,則該樣本中來自第四組的學生的編號為()A.30 B.31 C.32 D.333.在中,且,則等于()A. B. C. D.4.記Sn為等差數(shù)列{an}的前A.a(chǎn)n=2n-5 B.a(chǎn)n=3n-105.若向量,且,則等于()A. B. C. D.6.在中,若,,,則()A., B.,C., D.,7.為了研究某大型超市開業(yè)天數(shù)與銷售額的情況,隨機抽取了5天,其開業(yè)天數(shù)與每天的銷售額的情況如表所示:開業(yè)天數(shù)1020304050銷售額/天(萬元)62758189根據(jù)上表提供的數(shù)據(jù),求得關(guān)于的線性回歸方程為,由于表中有一個數(shù)據(jù)模糊看不清,請你推斷出該數(shù)據(jù)的值為()A.68 B.68.3 C.71 D.71.38.已知向量,則與夾角的大小為()A. B. C. D.9.設(shè)等比數(shù)列的公比,前項和為,則()A. B. C. D.10.在ΔABC中,如果A=45°,c=6,A.無解 B.一解 C.兩解 D.無窮多解二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列中,公差.則與的等差中項是_____(用數(shù)字作答)12.已知a、b為不垂直的異面直線,α是一個平面,則a、b在α上的射影有可能是:①兩條平行直線;②兩條互相垂直的直線;③同一條直線;④一條直線及其外一點.在上面結(jié)論中,正確結(jié)論的編號是________.(寫出所有正確結(jié)論的編號)13.若數(shù)列的前項和為,則該數(shù)列的通項公式為______.14.從甲、乙、丙等5名候選學生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.15.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=16.圓和圓交于A,B兩點,則弦AB的垂直平分線的方程是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,,點D在邊AB上,,且.(1)若的面積為,求CD;(2)設(shè),若,求證:.18.如圖,在四棱錐中,平面,底面是菱形,連,交于點.(Ⅰ)若點是側(cè)棱的中點,連,求證:平面;(Ⅱ)求證:平面平面.19.在中,角的對邊分別為,已知,,.(1)求的值;(2)求和的值.20.已知數(shù)列滿足,,設(shè).(1)求,,;(2)證明:數(shù)列是等比數(shù)列,并求數(shù)列和的通項公式.21.在中,三個內(nèi)角所對的邊分別為,滿足.(1)求角的大?。唬?)若,求,的值.(其中)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

由點到直線距離公式,求出圓心到直線y=x的距離d,再由弦長=2r【題目詳解】因為圓C:x2+y2-2x=0所以圓心(1,0)到直線y=x的距離為d=1-0因此,弦長=2r故選D【題目點撥】本題主要考查求圓被直線所截弦長問題,常用幾何法處理,屬于??碱}型.2、A【解題分析】

根據(jù)相鄰的兩個組的編號確定組矩,即可得解.【題目詳解】由題:樣本中相鄰的兩個組的編號分別為12,21,所以組矩為9,則第一組所取學生的編號為3,第四組所取學生的編號為30.故選:A【題目點撥】此題考查系統(tǒng)抽樣,關(guān)鍵在于根據(jù)系統(tǒng)抽樣方法確定組矩,依次求得每組選取的編號.3、A【解題分析】

在△ABC中,利用正弦定理與兩角和的正弦化簡已知可得,sin(A+C)=sinB,結(jié)合a>b,即可求得答案.【題目詳解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故選A.【題目點撥】本題考查兩角和與差的正弦函數(shù)與正弦定理的應(yīng)用,考查了大角對大邊的性質(zhì),屬于中檔題.4、A【解題分析】

等差數(shù)列通項公式與前n項和公式.本題還可用排除,對B,a5=5,S4=4(-7+2)【題目詳解】由題知,S4=4a1+【題目點撥】本題主要考查等差數(shù)列通項公式與前n項和公式,滲透方程思想與數(shù)學計算等素養(yǎng).利用等差數(shù)列通項公式與前n項公式即可列出關(guān)于首項與公差的方程,解出首項與公差,在適當計算即可做了判斷.5、B【解題分析】

根據(jù)坐標形式下向量的平行對應(yīng)的等量關(guān)系,即可計算出的值,再根據(jù)坐標形式下向量的加法即可求解出的坐標表示.【題目詳解】因為且,所以,所以,所以.故選:B.【題目點撥】本題考查根據(jù)坐標形式下向量的平行求解參數(shù)以及向量加法的坐標運算,難度較易.已知,若則有.6、A【解題分析】

利用正弦定理列出關(guān)系式,把與代入得出與的關(guān)系式,再與已知等式聯(lián)立求出即可.【題目詳解】∵在中,,,,∴由正弦定理得:,即,聯(lián)立解得:.故選:A.【題目點撥】本題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.7、A【解題分析】

根據(jù)表中數(shù)據(jù)計算,再代入線性回歸方程求得,進而根據(jù)平均數(shù)的定義求出所求的數(shù)據(jù).【題目詳解】根據(jù)表中數(shù)據(jù),可得,代入線性回歸方程中,求得,則表中模糊不清的數(shù)據(jù)是,故選:B.【題目點撥】本題考查了線性回歸方程過樣本中心點的應(yīng)用問題,是基礎(chǔ)題.8、D【解題分析】

。分別求出,,,利用即可得出答案.【題目詳解】設(shè)與的夾角為故選:D【題目點撥】本題主要考查了求向量的夾角,屬于基礎(chǔ)題.9、C【解題分析】

利用等比數(shù)列的前n項和公式表示出,利用等比數(shù)列的通項公式表示出,計算即可得出答案。【題目詳解】因為,所以故選C【題目點撥】本題考查等比數(shù)列的通項公式與前n項和公式,屬于基礎(chǔ)題。10、C【解題分析】

計算出csinA的值,然后比較a、csin【題目詳解】由題意得csinA=6×2【題目點撥】本題考查三角形解的個數(shù)的判斷,解題時要熟悉三角形解的個數(shù)的判斷條件,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解題分析】

根據(jù)等差中項的性質(zhì),以及的值,求出的值即是所求.【題目詳解】根據(jù)等差中項的性質(zhì)可知,的等差中項是,故.【題目點撥】本小題主要考查等差中項的性質(zhì),考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.12、①②④【解題分析】用正方體ABCD-A1B1C1D1實例說明A1D1與BC1在平面ABCD上的投影互相平行,AB1與BC1在平面ABCD上的投影互相垂直,BC1與DD1在平面ABCD上的投影是一條直線及其外一點.故①②④正確.13、【解題分析】

由,可得出,再令,可計算出,然后檢驗是否滿足在時的表達式,由此可得出數(shù)列的通項公式.【題目詳解】由題意可知,當時,;當時,.又不滿足.因此,.故答案為:.【題目點撥】本題考查利用求,一般利用來計算,但要對是否滿足進行檢驗,考查運算求解能力,屬于中等題.14、【解題分析】因為從5名候選學生中任選2名學生的方法共有10種,而甲、乙、丙中有2個被選中的方法有3種,所以甲、乙、丙中有2個被選中的概率為.15、65π【解題分析】

本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果。【題目詳解】如圖所示,作AB中點D,連接PD、CD,在CD上作三角形ABC的中心E,過點E作平面ABC的垂線,在垂線上取一點O,使得PO=OC。因為三棱錐底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點E的平面ABC的垂線上,因為PO=OC,P、C兩點在三棱錐的外接球的球面上,所以O(shè)點即為球心,因為平面PAB⊥平面ABC,PA=PB,D為AB中點,所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【題目點撥】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。16、【解題分析】

弦AB的垂直平分線即兩圓心連線.【題目詳解】弦AB的垂直平分線即兩圓心連線方程為故答案為【題目點撥】本題考查了弦的垂直平分線,轉(zhuǎn)化為過圓心的直線可以簡化運算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解題分析】

(1)直接利用三角形的面積公式求得,再由余弦定理列方程求出結(jié)果;(2)兩次利用正弦定理,結(jié)合兩角差的正弦公式、二倍角的正弦公式進行恒等變換求出結(jié)果.【題目詳解】(1)因為,即,又因為,,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因為,則,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化簡得展開并整理得【題目點撥】以三角形為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.18、(Ⅰ)見證明;(Ⅱ)見證明【解題分析】

(Ⅰ)由為菱形,得為中點,進而得到,利用線面平行的判定定理,即可求解;(Ⅱ)先利用線面垂直的判定定理,證得平面,進而利用面面垂直的判定定理,即可證得平面平面.【題目詳解】(Ⅰ)證明:因為為菱形,所以為中點,又為中點,所以,,平面,平面,所以,平面;(Ⅱ)因為平面,所以,因為為菱形,所以,,所以,平面,平面,所以,平面平面.【題目點撥】本題考查了線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1);(2),【解題分析】

(1)由,求得,由大邊對大角可知均為銳角,利用同角三角函數(shù)關(guān)系求得,利用兩角和差正弦公式求得結(jié)果;(2)根據(jù)正弦定理得到的關(guān)系,代入可求得;利用余弦定理求得.【題目詳解】(1)(2)由正弦定理可得:又,解得:,則由余弦定理可得:【題目點撥】本題考查解三角形的相關(guān)知識,涉及到同角三角函數(shù)關(guān)系、兩角和差正弦公式、大邊對大角的關(guān)系、正弦定理和余弦定理的應(yīng)用等知識,屬于??碱}型.20、(1),,;(2)證明見詳解,,.【解題分析】

(1)根據(jù)遞推公式,賦值求解即可;(2)利用定義,求證為定值即可,由數(shù)列通項公式即可求得和.【題目詳解】(1)由條件可得,將代入得,,而,所以.將代入得,所以.從而,,.(2)由條件可得,即,,又,所以是首項為1,公比為3的等比數(shù)列,.因為,所以.【題目點撥】本題考查利用遞推關(guān)系求數(shù)列某項的值,以及利用數(shù)列定義證明等比數(shù)列,及求通項公式,是數(shù)列綜合基礎(chǔ)題.21、(1);(2)4,6【解題分析】

(1)已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數(shù)公式及誘導公式化簡,求出的值,即可確定出的度數(shù);(2)根據(jù)平面向量數(shù)量積的運算法則計算得到一個等式,記作①,把的度數(shù)代入求出的值,記作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相應(yīng)的值代入,開方求出的值,由②③可知與為一個一元二次方程的兩個解,求出方程的解,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論