西藏拉薩片八校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第1頁
西藏拉薩片八校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第2頁
西藏拉薩片八校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第3頁
西藏拉薩片八校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第4頁
西藏拉薩片八校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

西藏拉薩片八校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,2.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.3.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.64.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.5.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.26.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.67.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.8.兩圓和相外切,且,則的最大值為()A. B.9 C. D.19.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.11.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.12.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.14.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.15.已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于_____.16.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.18.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.19.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.20.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點P的極坐標(biāo)為,,求的值.21.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.22.(10分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時,,,排除B、D選項;因為,,此時,,當(dāng)平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.2、B【解析】

選B.考點:圓心坐標(biāo)3、B【解析】

利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.4、B【解析】

由題意建立空間直角坐標(biāo)系,表示出各點坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.5、A【解析】

求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎(chǔ)題.6、B【解析】

設(shè),,利用復(fù)數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復(fù)數(shù)模的最大值,其實本題可以利用不等式來解決.7、B【解析】

利用復(fù)數(shù)的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復(fù)數(shù)的四則運算,需掌握復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.8、A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當(dāng)時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.9、C【解析】

由余弦函數(shù)的單調(diào)性找出的等價條件為,再利用大角對大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點睛】本題考查充分必要條件的判定,同時也考查了余弦函數(shù)的單調(diào)性、大角對大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.10、B【解析】

設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標(biāo)準(zhǔn)方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標(biāo)準(zhǔn)方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點位置,屬于中檔題.11、C【解析】

直接利用復(fù)數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復(fù)數(shù)的除法的運算法則的應(yīng)用,考查計算能力.12、D【解析】

通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.14、【解析】

連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時,最小,設(shè)點,則,所以當(dāng)時,,則,當(dāng)點的橫坐標(biāo)時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動點到定點的距離的求法,考查學(xué)生的計算求解能力,屬于中檔題.15、2【解析】

由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點,即求.【詳解】不妨設(shè)點P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點∴,.∵M,N分別為PQ,PF的中點,∴,∵PQ垂直l于點Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點,∴,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.16、-5【解析】

畫出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點A時,z最小,求解即可。【詳解】畫出x,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意讓其斜率與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標(biāo)系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.18、(1)見解析(2)見解析【解析】

(1)取的中點D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點,由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結(jié),.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.19、A【解析】

由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.20、(1),;(2)2.【解析】

(1)由得,求出曲線的直角坐標(biāo)方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;(2)將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,韋達定理得,點在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標(biāo)方程為,由直線的參數(shù)方程(t為參數(shù)),消去得,即直線的普通方程為.(Ⅱ)點的直角坐標(biāo)為,則點在直線上.將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,整理得,直線與曲線交于兩點,,即.設(shè)點所對應(yīng)的參數(shù)分別為,由韋達定理可得,.點在直線上,,.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程和普通方程的互化及應(yīng)用,屬于中檔題.21、(1).(2)答案見解析【解析】

(1)利用絕對值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當(dāng)且僅當(dāng)時取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時,可通過執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.22、(1)見解析;(2)【解析】

(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線段關(guān)系,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論