版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西南寧市馬山縣金倫中學、武鳴縣華僑中學等四校2024屆數(shù)學高一下期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列也是等比數(shù)列.若數(shù)列是等差數(shù)列,可類比得到關(guān)于等差數(shù)列的一個性質(zhì)為().A.是等差數(shù)列B.是等差數(shù)列C.是等差數(shù)列D.是等差數(shù)列2.已知直三棱柱的所有棱長都相等,為的中點,則與所成角的余弦值為()A. B. C. D.3.已知之間的幾組數(shù)據(jù)如下表:
1
2
3
4
5
6
0
2
1
3
3
4
假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為中的前兩組數(shù)據(jù)和求得的直線方程為則以下結(jié)論正確的是()A. B. C. D.4.已知角的頂點與原點重合,始邊與軸非負半軸重合,終邊過點,則()A. B. C. D.5.設(shè),則下列不等式中正確的是()A. B.C. D.6.設(shè)等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,,下列結(jié)論中正確的是()A. B.C.是數(shù)列中的最大值 D.數(shù)列無最小值7.已知隨機變量服從正態(tài)分布,且,,則()A.0.2 B.0.3 C.0.7 D.0.88.如果執(zhí)行右面的框圖,輸入,則輸出的數(shù)等于()A. B. C. D.9.等比數(shù)列的前項和為,,且成等差數(shù)列,則等于()A. B. C. D.10.南北朝數(shù)學家祖暅在推導(dǎo)球的體積公式時構(gòu)造了一個中間空心的幾何體,經(jīng)后繼學者改進后這個中間空心的幾何體其三視圖如圖所示,下列那個值最接近該幾何體的體積()A.8 B.12 C.16 D.24二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.12.數(shù)列中,已知,50為第________項.13.三棱錐中,分別為的中點,記三棱錐的體積為,的體積為,則____________14.由正整數(shù)組成的數(shù)列,分別為遞增的等差數(shù)列、等比數(shù)列,,記,若存在正整數(shù)()滿足,,則__________.15.在梯形中,,,設(shè),,則__________(用向量表示).16.某球的體積與表面積的數(shù)值相等,則球的半徑是三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的定義域:(2)求函數(shù)的單調(diào)遞減區(qū)間:(3)求函數(shù)了在區(qū)間上的最大值和最小值.18.某中學從高三男生中隨機抽取n名學生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:組號分組頻數(shù)頻率第1組50.05第2組a0.35第3組30b第4組200.20第5組100.10合計n1.00(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;(2)為了能對學生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學生進行不同項目的體能測試,若在這7名學生中隨機抽取2名學生進行引體向上測試,求第4組中至少有一名學生被抽中的概率.19.用紅、黃、藍三種不同顏色給圖中3個矩形隨機涂色,每個矩形只涂一種顏色,求3個矩形顏色都不同的概率.20.已知為數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和.21.在ΔABC中,角A,B,C的對邊分別為a,b,c,a=8,c-1(1)若ΔABC有兩解,求b的取值范圍;(2)若ΔABC的面積為82,B>C,求b-c
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】試題分析:本題是由等比數(shù)列與等差數(shù)列的相似性質(zhì),推出有關(guān)結(jié)論:由“等比”類比到“等差”,由“幾何平均數(shù)”類比到“算數(shù)平均數(shù)”;所以,所得結(jié)論為是等差數(shù)列.考點:類比推理.2、D【解題分析】
取的中點,連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【題目詳解】由題意,取的中點,連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【題目點撥】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、C【解題分析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′4、C【解題分析】
利用三角函數(shù)定義即可求得:,,再利用余弦的二倍角公式得解.【題目詳解】因為角的終邊過點,所以點到原點的距離所以,所以故選C【題目點撥】本題主要考查了三角函數(shù)定義及余弦的二倍角公式,考查計算能力,屬于較易題.5、B【解題分析】
取,則,,只有B符合.故選B.考點:基本不等式.6、D【解題分析】
根據(jù)題干條件可得到數(shù)列>1,0<q<1,數(shù)列之和越加越大,故A錯誤;根據(jù)等比數(shù)列性質(zhì)得到進而得到B正確;由前n項積的性質(zhì)得到是數(shù)列中的最大值;從開始后面的值越來越小,但是都是大于0的,故沒有最小值.【題目詳解】因為條件:,,,可知數(shù)列>1,0<q<1,根據(jù)等比數(shù)列的首項大于0,公比大于0,得到數(shù)列項均為正,故前n項和,項數(shù)越多,和越大,故A不正確;因為根據(jù)數(shù)列性質(zhì)得到,故B不對;前項之積為,所有大于等于1的項乘到一起,能夠取得最大值,故是數(shù)列中的最大值.數(shù)列無最小值,因為從開始后面的值越來越小,但是都是大于0的,故沒有最小值.故D正確.故答案為D.【題目點撥】本題考查了等比數(shù)列的通項公式及其性質(zhì)、遞推關(guān)系、不等式的解法,考查了推理能力與計算能力,屬于中檔題.7、B【解題分析】隨機變量服從正態(tài)分布,所以曲線關(guān)于對稱,且,由,可知,所以,故選B.8、D【解題分析】試題分析:當時,該程序框圖所表示的算法功能為:,故選D.考點:程序框圖.9、A【解題分析】
根據(jù)等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進而求得的值.【題目詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【題目點撥】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,屬于基礎(chǔ)題.10、C【解題分析】
由三視圖確定此幾何體的結(jié)構(gòu),圓柱的體積減去同底同高的圓錐的體積即為所求.【題目詳解】該幾何體是一個圓柱挖掉一個同底同高的圓錐,圓柱底為2,高為2,所求體積為,所以C選項最接近該幾何體的體積.故選:C【題目點撥】本題考查由三視圖確定幾何體的結(jié)構(gòu)及求其體積,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解題分析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.12、4【解題分析】
方程變?yōu)?,設(shè),解關(guān)于的二次方程可求得?!绢}目詳解】,則,即設(shè),則,有或取得,,所以是第4項?!绢}目點撥】發(fā)現(xiàn),原方程可通過換元,變?yōu)殛P(guān)于的一個二次方程。對于指數(shù)結(jié)構(gòu),,等,都可以通過換元變?yōu)槎涡问窖芯俊?3、【解題分析】
由已知設(shè)點到平面距離為,則點到平面距離為,所以,考點:幾何體的體積.14、262【解題分析】
根據(jù)條件列出不等式進行分析,確定公比、、的范圍后再綜合判斷.【題目詳解】設(shè)等比數(shù)列公比為,等差數(shù)列公差為,因為,,所以;又因為,分別為遞增的等差數(shù)列、等比數(shù)列,所以且;又時顯然不成立,所以,則,即;因為,,所以;因為,所以;由可知:,則,;又,所以,則有根據(jù)可解得符合條件的解有:或;當時,,解得不符,當時,解得,符合條件;則.【題目點撥】本題考查等差等比數(shù)列以及數(shù)列中項的存在性問題,難度較難.根據(jù)存在性將變量的范圍盡量縮小,通過不等式確定參變的取值范圍,然后再去確定符合的解,一定要注意帶回到原題中驗證,看是否滿足.15、【解題分析】
根據(jù)向量減法運算得結(jié)果.【題目詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【題目點撥】本題考查向量表示,考查基本化解能力16、3【解題分析】試題分析:,解得.考點:球的體積和表面積三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2),.(3),.【解題分析】
(1)根據(jù)分母不等于求出函數(shù)的定義域.(2)化簡函數(shù)的表達式,利用正弦函數(shù)的單調(diào)減區(qū)間求解函數(shù)的單調(diào)減區(qū)間即可.(3)通過滿足求出相位的范圍,利用正弦函數(shù)的值域,求解函數(shù)的最大值和最小值.【題目詳解】解:(1)函數(shù)的定義域為:,即,(2),令且,解得:,即所以的單調(diào)遞減區(qū)間:,.(3)由,可得:,當,即:時,當,即:時,【題目點撥】本題考查三角函數(shù)的最值以及三角函數(shù)的化簡與應(yīng)用,兩角和與差的三角函數(shù)的應(yīng)用考查計算能力.18、(1)直方圖見解析;(2).【解題分析】
(1)由題意知,0.050,從而n=100,由此求出第2組的頻數(shù)和第3組的頻率,并完成頻率分布直方圖.(2)利用分層抽樣,35名學生中抽取7名學生,設(shè)第1組的1位學生為,第4組的4位同學為,第5組的2位同學為,利用列舉法能求出第4組中至少有一名學生被抽中的概率.【題目詳解】(1)由頻率分布表可得,所以,;(2)因為第1,4,5組共有35名學生,利用分層抽樣,在35名學生中抽取7名學生,每組分別為:第1組;第4組;第5組.設(shè)第1組的1位學生為,第4組的4位同學為,第5組的2位同學為.則從7位學生中抽兩位學生的基本事件分別為:一共21種.記“第4組中至少有一名學生被抽中”為事件,即包含的基本事件分別為:一共3種,于是所以,.【題目點撥】本題考查概率的求法,考查頻率分布直方圖、列舉法等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.19、【解題分析】試題分析:可畫出樹枝圖,得到基本事件的總數(shù),再利用古典概型及其概率的計算公式,即可求解事件的概率.試題解析:所有可能的基本事件共有27個,如圖所示.記“3個矩形顏色都不同”為事件A,由圖,可知事件A的基本事件有2×3=6(個),故P(A)==.20、(1)(2)【解題分析】
(1)先根據(jù)和項與通項關(guān)系得項之間遞推關(guān)系,再根據(jù)等比數(shù)列定義以及通項公式求結(jié)果,(2)根據(jù)錯位相減法求結(jié)果.【題目詳解】(1)因為,所以當時,,相減得,,當時,,因此數(shù)列為首項為,2為公比的等比數(shù)列,(2),所以,則2,兩式相減得.【題目點撥】本題考查錯位相減法求和以及由和項求通項,考查基本求解能力,屬中檔題.21、(1)(8,62);(2)【解題分析】
(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學一年級數(shù)學口算練習題大全
- 江西婺源茶業(yè)職業(yè)學院《高效焊接技術(shù)》2023-2024學年第一學期期末試卷
- 華北理工大學輕工學院《中學美術(shù)課程標準與教材分析》2023-2024學年第一學期期末試卷
- 湖北工程職業(yè)學院《放射性三廢處理與處置》2023-2024學年第一學期期末試卷
- 周口文理職業(yè)學院《智能自動化與控制網(wǎng)絡(luò)實訓》2023-2024學年第一學期期末試卷
- 重慶理工大學《機器人工程數(shù)學(2)》2023-2024學年第一學期期末試卷
- 浙江水利水電學院《區(qū)塊鏈技術(shù)及運用》2023-2024學年第一學期期末試卷
- 鄭州信息工程職業(yè)學院《Office高級應(yīng)用》2023-2024學年第一學期期末試卷
- 長江職業(yè)學院《動物分子與細胞生物學導(dǎo)論》2023-2024學年第一學期期末試卷
- 云南財經(jīng)職業(yè)學院《國畫基礎(chǔ)(I)》2023-2024學年第一學期期末試卷
- 專業(yè)技術(shù)職務(wù)聘任表(2017年版) 人才引進 居轉(zhuǎn)戶 中級職稱 高級職稱 技師 上海戶口
- GB/T 21835-2008焊接鋼管尺寸及單位長度重量
- 消防安全風險辨識清單
- GB 19079.6-2005體育場所開放條件與技術(shù)要求第6部分:滑雪場所
- 1超分子化學簡介
- 聚酯合成副反應(yīng)介紹
- DB37-T 1342-2021平原水庫工程設(shè)計規(guī)范
- 電除顫教學課件
- 廣東省藥品電子交易平臺結(jié)算門戶系統(tǒng)會員操作手冊
- DB32T 3960-2020 抗水性自修復(fù)穩(wěn)定土基層施工技術(shù)規(guī)范
- 大斷面隧道設(shè)計技術(shù)基本原理
評論
0/150
提交評論