2024屆黑龍江省哈爾濱第六中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
2024屆黑龍江省哈爾濱第六中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
2024屆黑龍江省哈爾濱第六中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
2024屆黑龍江省哈爾濱第六中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
2024屆黑龍江省哈爾濱第六中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆黑龍江省哈爾濱第六中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.以兩點(diǎn)A(-3,-1)和B(5,5)為直徑端點(diǎn)的圓的標(biāo)準(zhǔn)方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=252.已知函數(shù)是奇函數(shù),將的圖像上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖像對應(yīng)的函數(shù)為.若的最小正周期為,且,則()A. B. C. D.3.圓心為的圓與圓相外切,則圓的方程為()A. B.C. D.4.已知向量滿足,.O為坐標(biāo)原點(diǎn),.曲線,區(qū)域.若是兩段分離的曲線,則()A. B. C. D.5.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,706.已知函數(shù),若存在滿足,且,則n的最小值為()A.3 B.4 C.5 D.67.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向右平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向左平移個單位長度8.圓,那么與圓有相同的圓心,且經(jīng)過點(diǎn)的圓的方程是().A. B.C. D.9.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)應(yīng)填()A. B. C. D.10.已知圓錐的母線長為6,母線與軸的夾角為30°,則此圓錐的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知當(dāng)時,函數(shù)(且)取得最大值,則時,的值為__________.12.已知:,則的取值范圍是__________.13.在中,角,,所對的邊分別為,,,若,則角最大值為______.14.若,,則的值為______.15.設(shè),,,若,則實(shí)數(shù)的值為______16.已知(),則________.(用表示)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,已知,,動點(diǎn)滿足條件.(1)求點(diǎn)的軌跡的方程;(2)設(shè)點(diǎn)是點(diǎn)關(guān)于直線的對稱點(diǎn),問是否存在點(diǎn)同時滿足條件:①點(diǎn)在曲線上;②三點(diǎn)共線,若存在,求直線的方程;若不存在,請說明理由.18.已知函數(shù),若,且,,求滿足條件的,.19.是亞太區(qū)域國家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅(jiān)持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對會議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,,).(1)求選取的市民年齡在內(nèi)的人數(shù);(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內(nèi)的概率.20.在△ABC中,a=3,b?c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.21.的內(nèi)角所對的邊分別為,向量,若.(1)求角的大??;(2)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】分析:由條件求出圓心坐標(biāo)和半徑的值,從而得出結(jié)論.詳解:圓心坐標(biāo)為(1,2),半徑r==5,故所求圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=25.故選D.點(diǎn)睛:本題主要考查求圓的標(biāo)準(zhǔn)方程的方法,求出圓心坐標(biāo)和半徑的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解題分析】

只需根據(jù)函數(shù)性質(zhì)逐步得出值即可?!绢}目詳解】因?yàn)闉槠婧瘮?shù),∴;又,,又∴,故選C?!绢}目點(diǎn)撥】本題考查函數(shù)的性質(zhì)和函數(shù)的求值問題,解題關(guān)鍵是求出函數(shù)。3、A【解題分析】

求出圓的圓心坐標(biāo)和半徑,利用兩圓相外切關(guān)系,可以求出圓的半徑,求出圓的標(biāo)準(zhǔn)方程,最后化為一般式方程.【題目詳解】設(shè)的圓心為A,半徑為r,圓C的半徑為R,,所以圓心A坐標(biāo)為,半徑r為3,圓心距為,因?yàn)閮蓤A相外切,所以有,故圓的標(biāo)準(zhǔn)方程為:,故本題選A.【題目點(diǎn)撥】本題考查了圓與圓的相外切的性質(zhì),考查了已知圓的方程求圓心坐標(biāo)和半徑,考查了數(shù)學(xué)運(yùn)算能力.4、A【解題分析】

由圓的定義及平面向量數(shù)量積的性質(zhì)及其運(yùn)算可得:點(diǎn)P在以O(shè)為圓心,r為半徑的圓上運(yùn)動且點(diǎn)P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運(yùn)動,由圖可得解.【題目詳解】建立如圖所示的平面直角坐標(biāo)系,則,,由,則,即點(diǎn)P在以O(shè)為圓心,r為半徑的圓上運(yùn)動,又,則點(diǎn)P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運(yùn)動,由圖可知:當(dāng)C∩Ω是兩段分離的曲線時,r的取值范圍為:3<r<5,故選:A.【題目點(diǎn)撥】本題考查平面向量數(shù)量積的性質(zhì)及其運(yùn)算,利用數(shù)形結(jié)合思想,將向量問題轉(zhuǎn)化為圓與圓的位置關(guān)系問題,考查轉(zhuǎn)化與化歸思想,屬于中等題.5、B【解題分析】試題分析:由等差數(shù)列的通項(xiàng)公式得,公差,所以,可能為,的所有可能取值為選.考點(diǎn):1.等差數(shù)列及其通項(xiàng)公式;2.數(shù)的整除性.6、D【解題分析】

根據(jù)正弦函數(shù)的性質(zhì),對任意(i,j=1,2,3,…,n),都有,因此要使得滿足條件的n最小,則盡量讓更多的取值對應(yīng)的點(diǎn)是最值點(diǎn),然后再對應(yīng)圖象取值.【題目詳解】,因?yàn)檎液瘮?shù)對任意(i,j=1,2,3,…,n),都有,要使n取得最小值,盡可能多讓(i=1,2,3,…,n)取得最高點(diǎn),因?yàn)?,所以要使得滿足條件的n最小,如圖所示則需取,,,,,,即取,,,,,,即.故選:D【題目點(diǎn)撥】本題主要考查正弦函數(shù)的圖象,還考查了數(shù)形結(jié)合的思想方法,屬于中檔題.7、B【解題分析】

由三角函數(shù)的誘導(dǎo)公式可得,再結(jié)合三角函數(shù)圖像的平移變換即可得解.【題目詳解】解:由,即為了得到函數(shù)的圖象,可以將函數(shù)的圖象向右平移個單位長度,故選:B.【題目點(diǎn)撥】本題考查了三角函數(shù)圖像的平移變換及三角函數(shù)的誘導(dǎo)公式,屬基礎(chǔ)題.8、B【解題分析】

圓的標(biāo)準(zhǔn)方程為,圓心,故排除、,代入點(diǎn),只有項(xiàng)經(jīng)過此點(diǎn),也可以設(shè)出要求的圓的方程:,再代入點(diǎn),可以求得圓的半徑為.故選.點(diǎn)睛:這個題目主要考查圓的標(biāo)準(zhǔn)方程,因?yàn)檫@是一道選擇題,故根據(jù)與條件中的圓的方程可以得到圓心坐標(biāo),進(jìn)而可以排除幾個選項(xiàng),如果正規(guī)方法,就可以按照已知圓心,寫出標(biāo)準(zhǔn)方程,代入已知點(diǎn)求出標(biāo)準(zhǔn)方程即可.9、A【解題分析】

根據(jù)程序框圖的結(jié)構(gòu)及輸出結(jié)果,逆向推斷即可得判斷框中的內(nèi)容.【題目詳解】由程序框圖可知,,則所以此時輸出的值,因而時退出循環(huán).因而判斷框的內(nèi)容為故選:A【題目點(diǎn)撥】本題考查了根據(jù)程序框圖的輸出值,確定判斷框的內(nèi)容,屬于基礎(chǔ)題.10、B【解題分析】

根據(jù)母線長和母線與軸的夾角求得底面半徑和圓錐的高,代入體積公式求得結(jié)果.【題目詳解】由題意可知,底面半徑;圓錐的高圓錐體積本題正確選項(xiàng):【題目點(diǎn)撥】本題考查錐體體積的求解問題,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】

先將函數(shù)的解析式利用降冪公式化為,再利用輔助角公式化為,其中,由題意可知與的關(guān)系,結(jié)合誘導(dǎo)公式以及求出的值.【題目詳解】,其中,當(dāng)時,函數(shù)取得最大值,則,,所以,,解得,故答案為.【題目點(diǎn)撥】本題考查三角函數(shù)最值,解題時首先應(yīng)該利用降冪公式、和差角公式進(jìn)行化簡,再利用輔助角公式化簡為的形式,本題中用到了與之間的關(guān)系,結(jié)合誘導(dǎo)公式進(jìn)行求解,考查計(jì)算能力,屬于中等題.12、【解題分析】

由已知條件將兩個角的三角函數(shù)轉(zhuǎn)化為一個角的三角函數(shù),再運(yùn)用三角函數(shù)的值域求解.【題目詳解】由已知得,所以,又因?yàn)?,所以,解得,所以,故?【題目點(diǎn)撥】本題考查三角函數(shù)的值域,屬于基礎(chǔ)題.13、【解題分析】

根據(jù)余弦定理列式,再根據(jù)基本不等式求最值【題目詳解】因?yàn)樗越亲畲笾禐椤绢}目點(diǎn)撥】本題考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,屬中檔題14、【解題分析】

求出,將展開即可得解.【題目詳解】因?yàn)?,,所以,所?【題目點(diǎn)撥】本題主要考查了三角恒等式及兩角和的正弦公式,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解題分析】

根據(jù)題意,可以求出,根據(jù)可得出,進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算即可求出的值.【題目詳解】故答案為:【題目點(diǎn)撥】本題考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.16、【解題分析】

根據(jù)同角三角函數(shù)之間的關(guān)系,結(jié)合角所在的象限,即可求解.【題目詳解】因?yàn)?,所以,故,解得,又,,所?故填.【題目點(diǎn)撥】本題主要考查了同角三角函數(shù)之間的關(guān)系,三角函數(shù)在各象限的符號,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在點(diǎn),直線方程為.【解題分析】

(1)設(shè),由題意根據(jù)兩點(diǎn)間的距離公式即可求解.(2)假設(shè)存在點(diǎn)滿足題意,此時直線的方程為:.設(shè),,根據(jù)題意可得,求出,再將直線與圓聯(lián)立求出,根據(jù)向量共線的坐標(biāo)表示以及點(diǎn)在圓上,求出即可求解.【題目詳解】(1)設(shè),由得,整理得:,所以點(diǎn)的軌跡方程為.(2)假設(shè)存在點(diǎn)滿足題意,此時直線的方程為:.設(shè),.因?yàn)榕c關(guān)于直線對稱,所以解得即.由,得,即.此時,,,所以,所以當(dāng)時,三點(diǎn)共線.若在曲線上,則,整理得,即,所以,即.綜上所述,存在點(diǎn),滿足條件①②,此時直線方程為.【題目點(diǎn)撥】本小題主要考查坐標(biāo)法、圓的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查抽象概括能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、整體運(yùn)算思想,化歸與轉(zhuǎn)化思想等.18、,【解題分析】

利用三角恒等變換,化簡的解析式,從而得出結(jié)論.【題目詳解】解:,∴,待定系數(shù),可得,又,∴,∴,.【題目點(diǎn)撥】本題主要考查三角恒等變換,屬于基礎(chǔ)題.19、(1)30人;(2).【解題分析】

(1)由頻率分布直方圖,先求出年齡在內(nèi)的頻率,進(jìn)而可求出人數(shù);(2)先由分層抽樣,確定應(yīng)從第3,4組中分別抽取3人,2人,記第3組的3名志愿者分別為,第4組的2名志愿者分別為,再用列舉法,分別列舉出總的基本事件,以及滿足條件的基本事件,基本事件個數(shù)比即為所求概率.【題目詳解】(1)由題意可知,年齡在內(nèi)的頻率為,故年齡在內(nèi)的市民人數(shù)為.(2)易知,第4組的人數(shù)為,故第3,4組共有50名市民,所以用分層抽樣的方法在50名志愿者中抽取5名志愿者,每組抽取的人數(shù)分別為:第3組;第4組.所以應(yīng)從第3,4組中分別抽取3人,2人.記第3組的3名志愿者分別為,第4組的2名志愿者分別為,則從5名志愿者中選取2名志愿者的所有情況為,,,,,,,,,,共有10種.其中第4組的2名志愿者至少有一名志愿者被選中的有:,,,,,,,共有7種,所以至少有一人的年齡在內(nèi)的概率為.【題目點(diǎn)撥】本題主要考查由頻率分布直方圖求頻數(shù),以及古典概型的概率問題,會分析頻率分布直方圖,熟記古典概型的概率計(jì)算公式即可,屬于??碱}型.20、(Ⅰ);(Ⅱ).【解題分析】

(Ⅰ)由題意列出關(guān)于a,b,c的方程組,求解方程組即可確定b,c的值;(Ⅱ)由題意結(jié)合正弦定理和兩角和差正余弦公式可得的值.【題目詳解】(Ⅰ)由題意可得:,解得:.(Ⅱ)由同角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論