2024屆浙江省杭州市高橋九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2024屆浙江省杭州市高橋九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2024屆浙江省杭州市高橋九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2024屆浙江省杭州市高橋九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2024屆浙江省杭州市高橋九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省杭州市高橋九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,下列結(jié)論:①;②;③;④若是該拋物線上的點,則;其中正確的有()A.1個 B.2個 C.3個 D.4個2.如圖,某水庫堤壩橫斷面迎水坡AB的坡比是1:,堤壩高BC=50m,則應(yīng)水坡面AB的長度是()A.100m B.100m C.150m D.50m3.如圖,AB是半圓的直徑,AB=2r,C、D為半圓的三等分點,則圖中陰影部分的面積是()。A.πr2 B.πr2 C.πr2 D.πr24.將半徑為5cm的圓形紙片沿著弦AB進(jìn)行翻折,弦AB的中點與圓心O所在的直線與翻折后的劣弧相交于C點,若OC=3cm,則折痕AB的長是()A. B. C.4cm或6cm D.或5.一元二次方程3x2﹣x=0的解是()A.x= B.x1=0,x2=3 C.x1=0,x2= D.x=06.小紅上學(xué)要經(jīng)過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學(xué)時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.7.用配方法解方程2x2-x-2=0,變形正確的是()A. B.=0 C. D.8.在同一平面上,外有一定點到圓上的距離最長為10,最短為2,則的半徑是()A.5 B.3 C.6 D.49.若二次函數(shù)的圖象的頂點在第一象限,且經(jīng)過點(0,1)和(-1,0),則的值的變化范圍是()A. B. C. D.10.如圖,在中,,,,以點為圓心,的長為半徑作弧,交于點,則陰影部分的面積是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當(dāng)點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.12.已知:如圖,在平行四邊形中,對角線、相較于點,在不添加任何輔助線的情況下,請你添加一個條件________________(只添加一個即可),使平行四邊形成為矩形.13.《九章算術(shù)》作為古代中國乃至東方的第一部自成體系的數(shù)學(xué)專著,與古希臘的《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》中記載有一問題“今有圓材埋在壁中,不知大?。凿忎徶钜淮?,鋸道長一尺,問徑幾何?”小輝同學(xué)根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道尺(1尺=10寸),則該圓材的直徑為______寸.14.如圖,點在雙曲線()上,過點作軸,垂足為點,分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點,作直線交軸于點,交軸于點,連接.若,則的值為______.15.已知二次函數(shù)的圖象開口向下,且其圖象頂點位于第一象限內(nèi),請寫出一個滿足上述條件的二次函數(shù)解析式為_____(表示為y=a(x+m)2+k的形式).16.如圖,Rt△ABC中,∠ACB=90°,AC=BC=4,D為線段AC上一動點,連接BD,過點C作CH⊥BD于H,連接AH,則AH的最小值為_____.17.點關(guān)于原點的對稱點的坐標(biāo)為__________.18.一個正六面體的骰子投擲一次得到正面向上的數(shù)字為奇數(shù)的概率:__________.三、解答題(共66分)19.(10分)如圖,函數(shù)y1=﹣x+4的圖象與函數(shù)(x>0)的圖象交于A(m,1),B(1,n)兩點.(1)求k,m,n的值;(2)利用圖象寫出當(dāng)x≥1時,y1和y2的大小關(guān)系.20.(6分)某校九年級學(xué)生某科目學(xué)期總評成績是由完成作業(yè)、單元檢測、期末考試三項成績構(gòu)成的,如果學(xué)期總評成績80分以上(含80分),則評定為“優(yōu)秀”,下表是小張和小王兩位同學(xué)的成績記錄:完成作業(yè)單元測試期末考試小張709080小王6075_______若按完成作業(yè)、單元檢測、期末考試三項成績按1:2:7的權(quán)重來確定學(xué)期總評成績.(1)請計算小張的學(xué)期總評成績?yōu)槎嗌俜???)小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?21.(6分)有A、B、C1、C2四張同樣規(guī)格的硬紙片,它們的背面完全一樣,正面如圖1所示.將它們背面朝上洗勻后,隨機抽取并拼圖.(1)填空:隨機抽出一張,正面圖形正好是中心對稱圖形的概率是__________.(2)隨機抽出兩張(不放回),其圖形可拼成如圖2的四種圖案之一.請你用畫樹狀圖或列表的方法,分析拼成哪種圖案的概率最大?22.(8分)問題提出:如圖所示,有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.a(chǎn).每次只能移動1個金屬片;b.較大的金屬片不能放在較小的金屬片上面.把個金屬片從1號針移到3號針,最少移動多少次?問題探究:為了探究規(guī)律,我們采用一般問題特殊化的方法,先從簡單的情形入手,再逐次遞進(jìn),最后得出一般性結(jié)論.探究一:當(dāng)時,只需把金屬片從1號針移到3號針,用符號表示,共移動了1次.探究二:當(dāng)時,為了避免將較大的金屬片放在較小的金屬片上面,我們利用2號針作為“中間針”,移動的順序是:a.把第1個金屬片從1號針移到2號針;b.把第2個金屬片從1號針移到3號針;c.把第1個金屬片從2號針移到3號針.用符號表示為:,,.共移動了3次.探究三:當(dāng)時,把上面兩個金屬片作為一個整體,則歸結(jié)為的情形,移動的順序是:a.把上面兩個金屬片從1號針移到2號針;b.把第3個金屬片從1號針移到3號針;c.把上面兩個金屬片從2號針移到3號針.其中(1)和(3)都需要借助中間針,用符號表示為:,,,,,,.共移動了7次.(1)探究四:請仿照前面步驟進(jìn)行解答:當(dāng)時,把上面3個金屬片作為一個整體,移動的順序是:___________________________________________________.(2)探究五:根據(jù)上面的規(guī)律你可以發(fā)現(xiàn)當(dāng)時,需要移動________次.(3)探究六:把個金屬片從1號針移到3號針,最少移動________次.(4)探究七:如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,當(dāng)時如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,那么與的關(guān)系是__________.23.(8分)(1)x2+2x﹣3=0(2)(x﹣1)2=3(x﹣1)24.(8分)學(xué)校要在教學(xué)樓側(cè)面懸掛中考勵志的標(biāo)語牌,如圖所示,為了使標(biāo)語牌醒目,計劃設(shè)計標(biāo)語牌的寬度為BC,為了測量BC,在距教學(xué)樓20米的升旗臺P處利用測角儀測得教學(xué)樓AB的頂端點B的仰角為,點C的仰角為,求標(biāo)語牌BC的寬度(結(jié)果保留根號)

25.(10分)如圖,拋物線y=ax2+bx+4(a≠0)與軸交于點B(-3,0)和C(4,0)與軸交于點A.(1)a=,b=;(2)點M從點A出發(fā)以每秒1個單位長度的速度沿AB向B運動,同時,點N從點B出發(fā)以每秒1個單位長度的速度沿BC向C運動,當(dāng)點M到達(dá)B點時,兩點停止運動.t為何值時,以B、M、N為頂點的三角形是等腰三角形?(3)點P是第一象限拋物線上的一點,若BP恰好平分∠ABC,請直接寫出此時點P的坐標(biāo).26.(10分)用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?1)4x2-1=0;(2)3x2+x-5=0;

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)拋物線的對稱軸可判斷①;由拋物線與x軸的交點及拋物線的對稱性可判斷②;由x=-1時y>0可判斷③;根據(jù)拋物線的開口向下且對稱軸為直線x=-2知圖象上離對稱軸水平距離越小函數(shù)值越大,可判斷④.【詳解】∵拋物線的對稱軸為直線,

∴,所以①正確;

∵與x軸的一個交點在(-3,0)和(-4,0)之間,

∴由拋物線的對稱性知,另一個交點在(-1,0)和(0,0)之間,

∴拋物線與y軸的交點在y軸的負(fù)半軸,即c<0,故②正確;

∵由②、①知,時y>0,且,

即>0,所以③正確;∵點與點關(guān)于對稱軸直線對稱,∴,∵拋物線的開口向下,且對稱軸為直線,

∴當(dāng),函數(shù)值隨的增大而減少,

∵,∴,∴,故④錯誤;綜上:①②③正確,共3個,

故選:C.【點睛】本題考查了二次函數(shù)與系數(shù)的關(guān)系:對于二次函數(shù),二次項系數(shù)a決定拋物線的開口方向和大?。灰淮雾椣禂?shù)b和二次項系數(shù)a共同決定對稱軸的位置;常數(shù)項c決定拋物線與y軸交點;拋物線與x軸交點個數(shù)由決定.2、A【解析】∵堤壩橫斷面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故選A3、D【分析】連接OC、OD,利用同底等高的三角形面積相等可知陰影部分的面積等于扇形OCD的面積,然后計算扇形面積就可.【詳解】連接OC、OD.∵點C,D為半圓的三等分點,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等邊三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴陰影部分的面積=S扇形CODπr1.故選D.【點睛】本題考查了扇形面積求法,利用已知得出理解陰影部分的面積等于扇形OCD的面積是解題的關(guān)鍵.4、D【分析】分兩種情況討論:AB與C點在圓心同側(cè),AB與C點在圓心兩側(cè),根據(jù)翻折的性質(zhì)及垂徑定理和勾股定理計算即可.【詳解】如圖:E是弦AB的中點是直角三角形,沿著弦AB進(jìn)行翻折得到在中如圖:E是弦AB的中點是直角三角形沿著弦AB進(jìn)行翻折得到在中故選:D【點睛】本題考查的是垂徑定理,掌握翻折的性質(zhì)及垂徑定理并能正確的進(jìn)行分類討論畫出圖形是關(guān)鍵.5、C【解析】根據(jù)題意對方程提取公因式x,得到x(

3x-1)=0的形式,則這兩個相乘的數(shù)至少有一個為0,由此可以解出x的值.【詳解】∵3x2﹣x=0,∴x(3x﹣1)=0,∴x=0或3x﹣1=0,∴x1=0,x2=,故選C.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點靈活選用合適的方法.6、B【分析】畫出樹狀圖,根據(jù)概率公式即可求得結(jié)果.【詳解】畫樹狀圖,得∴共有8種情況,經(jīng)過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選:B.【點睛】本題考查隨機事件的概率計算,關(guān)鍵是要熟練應(yīng)用樹狀圖,屬基礎(chǔ)題.7、D【解析】用配方法解方程2?x?2=0過程如下:移項得:,二次項系數(shù)化為1得:,配方得:,即:.故選D.8、D【分析】由點P在圓外,易得到圓的直徑為10-2,然后計算圓的半徑即可.【詳解】解:∵點P在圓外∴圓的直徑為10-2=8∴圓的半徑為4故答案為D.【點睛】本題考查了點與圓的位置關(guān)系,關(guān)鍵是根據(jù)題意確定圓的直徑,是解答本題的關(guān)鍵.9、A【分析】代入兩點的坐標(biāo)可得,,所以,由拋物線的頂點在第一象限可得且,可得,再根據(jù)、,可得S的變化范圍.【詳解】將點(0,1)代入中可得將點(-1,0)代入中可得∴∵二次函數(shù)圖象的頂點在第一象限∴對稱軸且∴∵,∴∴故答案為:A.【點睛】本題考查了二次函數(shù)的系數(shù)問題,掌握二次函數(shù)的性質(zhì)以及各系數(shù)間的關(guān)系是解題的關(guān)鍵.10、A【分析】根據(jù)直角三角形的性質(zhì)得到AC=BC=2,∠B=60°,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AC=BC=2,∠B=60°,∴陰影部分的面積=S△ACB-S扇形BCD=×2×2-=故選:A.【點睛】本題考查了扇形面積的計算,含30°角的直角三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、3或1【分析】由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.12、或(等,答案不唯一)【分析】矩形是特殊的平行四邊形,矩形有而平行四邊形不具有的性質(zhì)是:矩形的對角線相等,矩形的四個內(nèi)角是直角;可針對這些特點來添加條件.【詳解】解:若使?ABCD變?yōu)榫匦?,可添加的條件是:AC=BD;(對角線相等的平行四邊形是矩形)∠ABC=90°等.(有一個角是直角的平行四邊形是矩形)故答案為:AC=BD或(∠ABC=90°等)【點睛】此題主要考查的是矩形的判定方法,熟練掌握矩形和平行四邊形的聯(lián)系和區(qū)別是解答此題的關(guān)鍵.13、1.【分析】設(shè)的半徑為,在中,,則有,解方程即可.【詳解】設(shè)的半徑為.在中,,則有,解得,∴的直徑為1寸,故答案為1.【點睛】本題考查垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.14、【分析】設(shè)OA交CF于K.利用面積法求出OA的長,再利用相似三角形的性質(zhì)求出AB、OB即可解決問題;【詳解】解:如圖,設(shè)OA交CF于K.由作圖可知,CF垂直平分線段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案為:.【點睛】本題考查了尺規(guī)作圖-作線段的垂直平分線,線段垂直平分線的性質(zhì),反比例函數(shù)圖象上的點的坐標(biāo)特征,勾股定理,相似三角形的判定與性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考常考題型.15、y=﹣(x﹣1)2+1(答案不唯一)【解析】因為二次函數(shù)的頂點坐標(biāo)為:(-m,k),根據(jù)題意圖象的頂點位于第一象限,所以可得:m<0,k>0,因此滿足m<0,k>0的點即可,故答案為:(答案不唯一).16、2﹣2【分析】取BC中點G,連接HG,AG,根據(jù)直角三角形的性質(zhì)可得HG=CG=BG=BC=2,根據(jù)勾股定理可求AG=2,由三角形的三邊關(guān)系可得AH≥AG﹣HG,當(dāng)點H在線段AG上時,可求AH的最小值.【詳解】解:如圖,取BC中點G,連接HG,AG,∵CH⊥DB,點G是BC中點∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即當(dāng)點H在線段AG上時,AH最小值為2﹣2,故答案為:2﹣2【點睛】本題考查了動點問題,解決本題的關(guān)鍵是熟練掌握直角三角形中勾股定理關(guān)系式.17、【分析】根據(jù)關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)求解即可.【詳解】解:點關(guān)于原點對稱點是,則點的坐標(biāo)為:故答案為:【點睛】本題考查的關(guān)于原點對稱的點的坐標(biāo)的問題.18、【解析】根據(jù)向上一面可能出現(xiàn)的有6種情況,其中出現(xiàn)數(shù)字為奇數(shù)的有3種情況,利用概率公式進(jìn)行計算即可得.【詳解】擲一次正六面體骰子向上一面的數(shù)字有1、2、3、4、5、6共6種可能,其中奇數(shù)有1,3,5共3個,∴擲一次朝上一面的數(shù)字是奇數(shù)的概率是=,故答案為:.【點睛】本題考查了概率的計算,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共66分)19、(1)m=3,k=3,n=3;(1)當(dāng)1<x<3時,y1>y1;當(dāng)x>3時,y1<y1;當(dāng)x=1或x=3時,y1=y1.【分析】(1)把A與B坐標(biāo)代入一次函數(shù)解析式求出m與n的值,將A坐標(biāo)代入反比例解析式求出k的值;(1)利用圖像,可知分x=1或x=3,1<x<3與x>3三種情況判斷出y1和y1的大小關(guān)系即可.【詳解】(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=得:k=3,把B(1,n)代入一次函數(shù)解析式得:n=﹣1+4=3;(1)∵A(3,1),B(1,3),∴根據(jù)圖像得當(dāng)1<x<3時,y1>y1;當(dāng)x>3時,y1<y1;當(dāng)x=1或x=3時,y1=y1.20、(1)小張的期末評價成績?yōu)?1分.(2)最少考85分才能達(dá)到優(yōu)秀【分析】(1)直接利用加權(quán)平均數(shù)的定義求解可得;(2)設(shè)小王期末考試成績?yōu)閤分,根據(jù)加權(quán)平均數(shù)的定義列出不等式求出最小整數(shù)解即可.【詳解】解:(1)小張的期末評價成績?yōu)椋?1(分);答:小張的期末評價成績?yōu)?1分.(2)設(shè)小王期末考試成績?yōu)閤分,根據(jù)題意,得:,解得x≥84,∴小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考85分才能達(dá)到優(yōu)秀.【點睛】本題主要考查加權(quán)平均數(shù),解題的關(guān)鍵是掌握加權(quán)平均數(shù)的定義.21、(1);(2)拼成電燈或房子的概率最大.【分析】(1)根據(jù)中心對稱圖形的定義得出四種圖案哪些是中心對稱圖形,即可得出答案;(2)首先根據(jù)題意畫出樹狀圖,然后根據(jù)樹狀圖求得所有等可能的結(jié)果與拼成各種圖案的情況,再利用概率公式即可求得答案.【詳解】解:(1)∵根據(jù)中心對稱圖形的性質(zhì),旋轉(zhuǎn)180°后,能夠與原圖形完全重合的圖形是中心對稱圖形,∴只有A和B中圖案符合,∴正面圖形正好是中心對稱圖形的概率=;(2)解:畫樹狀圖如下:共有12種等可能的結(jié)果,拼成卡通人、電燈、房子、小山的分別有2,4,4,2種情況,∴P(卡通人)==,P(電燈)==,P(房子)==,P(小山)==,∴拼成電燈或房子的概率最大.【點睛】本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.22、(1)當(dāng)時,移動順序為:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2),(3),(4)【分析】根據(jù)移動方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個階段移動,用盤子數(shù)目減1的移動次數(shù)都移動到2柱,然后把最大的盤子移動到3柱,再用同樣的次數(shù)從2柱移動到3柱,從而完成,然后根據(jù)移動次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.【詳解】解:(1)當(dāng)時,把上面3個金屬片作為一個整體,移動的順序是:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).故答案為:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2)解:設(shè)是把n個盤子從1柱移到3柱過程中移動盤子之最少次數(shù)n=1時,f(1)=1;n=2時,小盤→2柱,大盤→3柱,小柱從2柱→3柱,完成,即n=3時,小盤→3柱,中盤→2柱,小盤從3柱→2柱,大盤從1柱→3柱,小盤從2柱→1柱,中盤從2柱→3柱,小盤從1柱→3柱,完成.[用種方法把中、小兩盤移到2柱,大盤3柱;再用種方法把中、小兩盤從2柱3柱,完成],故答案為:(3)由(2)知:故答案為:(4)故答案為:【點睛】本題考查了歸納推理、圖形變化的規(guī)律問題,根據(jù)題目信息,得出移動次數(shù)分成兩段計數(shù),利用盤子少一個時的移動次數(shù)移動到2柱,把最大的盤子移動到3柱,然后再用同樣的次數(shù)從2柱移動到3柱,從而完成移動過程是解題的關(guān)鍵,本題對閱讀并理解題目信息的能力要求比較高.23、(1)x=﹣3或x=1;(2)x=1或x=4.【分析】(1)用因式分解法求解即可;(2)先移項,再用因式分解法求解即可.【詳解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【點睛】本題考查了一元二次方程的解法,常用的方法由直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關(guān)鍵.24、BC=【分析】根據(jù)正切的定義求出,根據(jù)等腰直角三角形的性質(zhì)求出,結(jié)合圖形計算,得到答案.【詳解】解:由題意知,PD=20,,在中,,則,在中,,,,故答案為:.【點睛】本題考查的是解直角三角形的應(yīng)用仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論