版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖北省宜昌第二中學高二數(shù)學第二學期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集U={1,3,5,7},集合M={1,|a-5|},MU,M={5,7},則實數(shù)a的值為()A.2或-8 B.-8或-2 C.-2或8 D.2或82.在各項都為正數(shù)的等差數(shù)列{an}中,若a1+a2+…+a10=30,則a5?a6的最大值等于()A.3B.6C.9D.363.在區(qū)間[0,2]上隨機取兩個數(shù)x,y,則xy∈[0,2]的概率是().A.1-ln22B.3-2ln4.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.5.已知隨機變量,其正態(tài)分布密度曲線如圖所示,若向長方形中隨機投擲1點,則該點恰好落在陰影部分的概率為()附:若隨機變量,則,.A.0.1359 B.0.7282 C.0.6587 D.0.86416.動點在圓上移動時,它與定點連線的中點的軌跡方程是()A. B.C. D.7.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為調(diào)和數(shù)列.已知數(shù)列為調(diào)和數(shù)列,且,則()A.10 B.20 C.30 D.408.某程序框圖如圖所示,則該程序運行后輸出的值是()A.0 B.-1 C.-2 D.-89.在底面為正方形的四棱錐中,平面,,則異面直線與所成的角是()A. B. C. D.10.在正方體中,與平面所成角的正弦值為()A. B. C. D.11.已知,“函數(shù)有零點”是“函數(shù)在上是減函數(shù)”的().A.充分不必要條件 B.必要不充分條件 C.充要條件 D.即不充分也不必要條件12.函數(shù)f(x)=3A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.=______.14.對于,,規(guī)定,集合,則中的元素的個數(shù)為__________.15.設函數(shù),已知,則_________.16.“”的否定是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)五一勞動節(jié)放假,某商場進行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍、紫的小球各2個,分別對應1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計分,計分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:(1)取出的3個小球顏色互不相同的概率;(2)隨機變量的概率分布和數(shù)學期望;(3)求某人抽獎一次,中獎的概率.18.(12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,M是的中點,是的中點,點在上,且滿足.(1)證明:.(2)當取何值時,直線與平面所成的角最大?并求該角最大值的正切值.(3)若平面與平面所成的二面角為,試確定P點的位置.19.(12分)已知數(shù)列滿足,且(1)求及;(2)設求數(shù)列的前n項和20.(12分)某中學高中畢業(yè)班的三名同學甲、乙、丙參加某大學的自主招生考核,在本次考核中只有合格和優(yōu)秀兩個等次.若考核為合格,則給予分的降分資格;若考核為優(yōu)秀,則給予分的降分資格.假設甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等次相互獨立.(1)求在這次考核中,甲、乙、丙三名同學中至少有一名考核為優(yōu)秀的概率;(2)記在這次考核中,甲、乙、丙三名同學所得降分之和為隨機變量,請寫出所有可能的取值,并求的值.21.(12分)設函數(shù).(1)解不等式;(2)若存在,使不等式成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)若,證明:當時,;(2)若在有兩個零點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】分析:利用全集,由,列方程可求的值.詳解:由,且,又集合,實數(shù)的值為或,故選D.點睛:本題考查補集的定義與應用,屬于簡單題.研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關(guān)系時,關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系.2、C【解題分析】試題分析:由題設,所以,又因為等差數(shù)列各項都為正數(shù),所以,當且僅當時等號成立,所以a5·a6的最大值等于9,故選C.考點:1、等差數(shù)列;2、基本不等式.3、C【解題分析】試題分析:由題意所有的基本事件滿足0≤x≤20≤y≤2,所研究的事件滿足0≤y≤2x,畫出可行域如圖,總的區(qū)域面積是一個邊長為2的正方形,其面積為4,滿足0≤y≤2x的區(qū)域的面積為考點:幾何概型4、A【解題分析】
陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應概率.【題目詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【題目點撥】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.5、D【解題分析】
根據(jù)正態(tài)分布密度曲線的對稱性和性質(zhì),再利用面積比的幾何概型求解概率,即得解.【題目詳解】由題意,根據(jù)正態(tài)分布密度曲線的對稱性,可得:故所求的概率為,故選:D【題目點撥】本題考查了正態(tài)分布的圖像及其應用,考查了學生概念理解,轉(zhuǎn)化與劃歸的能力,屬于基礎(chǔ)題.6、B【解題分析】
設連線的中點為,再表示出動點的坐標,代入圓化簡即可.【題目詳解】設連線的中點為,則因為動點與定點連線的中點為,故,又在圓上,故,即即故選:B【題目點撥】本題主要考查了軌跡方程的一般方法,屬于基礎(chǔ)題型.7、B【解題分析】分析:由題意可知數(shù)列是等差數(shù)列,由等差數(shù)列的性質(zhì)得,得詳解:數(shù)列為調(diào)和數(shù)列為等差數(shù)列,由等差數(shù)列的求和公式得,由等差數(shù)列的性質(zhì)故選B點睛:本題考查數(shù)列的性質(zhì)和應用,解題時要認真審題,通過合理的轉(zhuǎn)化建立起已知條件和考點之間的聯(lián)系是解題關(guān)鍵.8、B【解題分析】根據(jù)流程圖可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第4次循環(huán):;此時程序跳出循環(huán),輸出.本題選擇B選項.9、B【解題分析】
底面ABCD為正方形,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,因為PB∥CM,所以就是異面直線PB與AC所成的角.【題目詳解】解:由題意:底面ABCD為正方形,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,
.
∴PBCM是平行四邊形,
∴PB∥CM,
所以∠ACM就是異面直線PB與AC所成的角.
設PA=AB=,在三角形ACM中,
∴三角形ACM是等邊三角形.
所以∠ACM等于60°,即異面直線PB與AC所成的角為60°.
故選:B.【題目點撥】本題考查了兩條異面直線所成的角的證明及求法.屬于基礎(chǔ)題.10、B【解題分析】
證明與平面所成角為,再利用邊的關(guān)系得到正弦值.【題目詳解】如圖所示:連接與交于點,連接,過點作與平面所成角等于與平面所成角正方體平面平面與平面所成角為設正方體邊長為1在中故答案選B【題目點撥】本題考查了線面夾角,判斷與平面所成角為是解得的關(guān)鍵,意在考查學生的計算能力和空間想象能力.11、B【解題分析】試題分析:由題意得,由函數(shù)有零點可得,,而由函數(shù)在上為減函數(shù)可得,因此是必要不充分條件,故選B.考點:1.指數(shù)函數(shù)的單調(diào)性;2.對數(shù)函數(shù)的單調(diào)性;3.充分必要條件.12、B【解題分析】
取特殊值排除得到答案.【題目詳解】f(x)=3x故答案選B【題目點撥】本題考查了函數(shù)圖像的判斷,特殊值可以簡化運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
試題分析:.考點:對數(shù)的運算.14、2【解題分析】分析:由⊕的定義,ab=1分兩類進行考慮:a和b一奇一偶,則ab=1;a和b同奇偶,則a+b=1.由a、b∈N*列出滿足條件的所有可能情況,再考慮點(a,b)的個數(shù)即可詳解:ab=1,a、b∈N*,若a和b一奇一偶,則ab=1,滿足此條件的有1×1=3×12=4×9,故點(a,b)有6個;若a和b同奇偶,則a+b=1,滿足此條件的有1+35=2+34=3+33=4+32=…=18+18共18組,故點(a,b)有35個,所以滿足條件的個數(shù)為2個.故答案為2.點睛:本題考查的知識要點:列舉法在排列組合中的應用,正確理解新定義的含義是解決本題的關(guān)鍵.15、【解題分析】
對分離常數(shù)后,通過對比和的表達式,求得的值.【題目詳解】依題意,,.【題目點撥】本小題主要考查函數(shù)求值,考查運算求解能力,屬于基礎(chǔ)題.16、【解題分析】分析:根據(jù)的否定為得結(jié)果.詳解:因為的否定為,所以“”的否定是點睛:對全稱(存在性)命題進行否定的兩步操作:①找到命題所含的量詞,沒有量詞的要結(jié)合命題的含義加上量詞,再進行否定;②對原命題的結(jié)論進行否定.的否定為,的否定為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)分布列見解析,數(shù)學期望為(3)【解題分析】
(1)設事件表示“取出的3個小球上的顏色互不相同”,利用古典概型、排列組合能求出取出的3個小球顏色互不相同的概率;(2)由題意得有可能的取值為:2,3,4,5,6,分別求出相應的概率,由此能求出隨機變量的概率分布列和數(shù)學期望;(3)設事件C表示“某人抽獎一次,中獎”,則,由此能求出結(jié)果.【題目詳解】(1)“一次取出的3個小球上的顏色互不相同”的事件記為,則(2)由題意有可能的取值為:2,3,4,5,6;;;;所以隨機變量的概率分布為23456因此的數(shù)學期望為(3)“某人抽獎一次,中獎”的事件為,則【題目點撥】本題考查概率、離散型隨機變量的分布列、數(shù)學期望的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是中檔題.18、(1)見解析;(2)見解析;(3)見解析【解題分析】
(1)以AB,AC,分別為,,軸,建立空間直角坐標系,求出各點的坐標及對應向量的坐標,易判斷,即;(2)設出平面ABC的一個法向量,我們易表達出,然后利用正弦函數(shù)的單調(diào)性及正切函數(shù)的單調(diào)性的關(guān)系,求出滿足條件的值,進而求出此時的正線值;(3)平面PMN與平面ABC所成的二面角為,則平面PMN與平面ABC法向量的夾角余弦值的絕對值為,代入向量夾角公式,可以構(gòu)造一個關(guān)于的方程,解方程即可求出對應值,進而確定出滿足條件的點P的位置.【題目詳解】(1)證明:如圖,以AB,AC,分別為,,軸,建立空間直角坐標系.則,,,從而,,,所以.(2)平面ABC的一個法向量為,則(※).而,當最大時,最大,無意義,除外,由(※)式,當時,,.(3)平面ABC的一個法向量為.設平面PMN的一個法向量為,由(1)得.由得,解得,令,得,∵平面PMN與平面ABC所成的二面角為,∴,解得.故點P在的延長線上,且.【題目點撥】本題考查的知識點是向量評議表述線線的垂直、平等關(guān)系,用空間向量求直線與平面的夾角,用空間向量求平面間的夾角,其中熟練掌握向量夾角公式是解答此類問題的關(guān)鍵.19、(1),;(2)【解題分析】
(1)由,得到數(shù)列{}是公比為的等比數(shù)列,進而可求得和;(2)由(1)知,根據(jù)等差數(shù)列的定義,得到數(shù)列是首項為,公差為的等差數(shù)列,再利用等差數(shù)列的求和公式,即可求解.【題目詳解】(1)由題意,可知,且,則數(shù)列{}是公比為的等比數(shù)列,又由,解得,.(2)由(1)知,又由,且,所以數(shù)列是首項為2,公差為-1的等差數(shù)列,所以.【題目點撥】本題主要考查了等差、等比數(shù)的定義,以及等比數(shù)列的通項公式和等差數(shù)列的前n項和公式的應用,著重考查了推理與運算能力,屬于中檔題.20、(1);(2)所有可能的取值為、、、,.【解題分析】
(1)計算出三名同學考核均為合格的概率,利用對立事件的概率公式可計算出所求事件的概率;(2)根據(jù)題意得出所有可能的取值為、、、,利用相互獨立事件概率乘法公式和互斥事件概率計算公式能求出.【題目詳解】(1)由題意知,三名同學考核均為合格的概率為,因此,甲、乙、丙三名同學中至少有一名考核為優(yōu)秀的概率為;(2)由題意知,隨機變量的所有可能取值有、、、,則,,.【題目點撥】本題考查概率的求法,考查相互獨立事件概率乘法公式、對立事件概率計算公式等基礎(chǔ)知識,考查運算求解能力,是中等題.21、(1);(2).【解題分析】試題分析:(1)結(jié)合函數(shù)的解析式分類討論可得不等式的解集為(2)原問題等價于,結(jié)合(1)中的結(jié)論可得時,,則實數(shù)的取值范圍為試題解析:(1)由題得,,則有或或解得或或,綜上所述,不等式的解集為(2)存在,使不等式成立等價于由(1)知,時,,∴時,,故,即∴實數(shù)的取值范圍為22、(1)證明見解析.(2).【解題分析】
分析:(1)只要求得在時的最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鋼材產(chǎn)業(yè)鏈上下游合作協(xié)議模板
- 科技行業(yè)專題報告:DeepSeek:技術(shù)顛覆or創(chuàng)新共贏
- 奮斗新時代決心鑄就輝煌
- 2025版城市地下空間挖掘機租賃合同協(xié)議書3篇
- 2025個人藝術(shù)品收藏分期付款合同2篇
- 2025年個人借款咨詢與風險管理服務協(xié)議4篇
- 2025版土地承包經(jīng)營權(quán)流轉(zhuǎn)合同示范書6篇
- 2025年全球及中國絕對大分子多角度光散射檢測器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球柔性表面加熱器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球噴丸服務行業(yè)調(diào)研及趨勢分析報告
- 2025水利云播五大員考試題庫(含答案)
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預防專家共識(2024版)解讀
- 藥企質(zhì)量主管競聘
- 信息對抗與認知戰(zhàn)研究-洞察分析
- 中藥飲片驗收培訓
- 手術(shù)室??谱o士工作總結(jié)匯報
- 2025屆高三聽力技巧指導-預讀、預測
- DB34T 1831-2013 油菜收獲與秸稈粉碎機械化聯(lián)合作業(yè)技術(shù)規(guī)范
- 蘇州市2025屆高三期初陽光調(diào)研(零模)政治試卷(含答案)
- 創(chuàng)傷處理理論知識考核試題及答案
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
評論
0/150
提交評論