西安市慶安初級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
西安市慶安初級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
西安市慶安初級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
西安市慶安初級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
西安市慶安初級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

西安市慶安初級中學(xué)2024屆數(shù)學(xué)高二第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.2.展開式的常數(shù)項為()A.112 B.48 C.-112 D.-483.五個人站成一排,其中甲乙相鄰的站法有()A.18種 B.24種 C.48種 D.36種4.甲射擊時命中目標的概率為,乙射擊時命中目標的概率為,則甲乙兩人各自射擊同一目標一次,則該目標被擊中的概率為()A. B. C. D.5.若集合,函數(shù)的定義域為集合B,則A∩B等于()A.(0,1)B.[0,1)C.(1,2)D.[1,2)6.設(shè)集合,若,則()A.1 B. C. D.-17.已知函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則的取值范圍是()A. B. C. D.8.拋物線的焦點為,點,為拋物線上一點,且不在直線上,則周長的最小值為A. B. C. D.9.設(shè)表示直線,是平面內(nèi)的任意一條直線,則“”是“”成立的()條件A.充要 B.充分不必要C.必要不充分 D.既不充分也不必要10.已知命題,,命題q:若恒成立,則,那么()A.“”是假命題 B.“”是真命題C.“”為真命題 D.“”為真命題11.已知隨機變量服從二項分布,則()A. B. C. D.12.在的展開式中,含的項的系數(shù)是()A.-832 B.-672 C.-512 D.-192二、填空題:本題共4小題,每小題5分,共20分。13.某課題組進行城市空氣質(zhì)量調(diào)查,按地域把24個城市分成甲、乙、丙三組,對應(yīng)的城市數(shù)分別為4,12,8,若用分層抽樣抽取6個城市,則丙組中應(yīng)抽取的城市數(shù)為_______.14.若函數(shù)有零點,則實數(shù)的取值范圍是___________.15.已知X的分布列如圖所示,則X-101P0.20.3a(1),(2),(3),其中正確的個數(shù)為________.16.在體積為9的斜三棱柱ABC—A1B1C1中,S是C1C上的一點,S—ABC的體積為2,則三棱錐S—A1B1C1的體積為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)集合,.(1)若,求;(2)若,求的取值范圍.18.(12分)選修4-4:坐標系與參數(shù)方程直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為:(Ⅰ)寫出圓C和直線l的普通方程;(Ⅱ)點P為圓C上動點,求點P到直線l的距離的最小值.19.(12分)已知橢圓:的上頂點為A,以A為圓心,橢圓的長半軸為半徑的圓與y軸的交點分別為、.(1)求橢圓的方程;(2)設(shè)不經(jīng)過點A的直線與橢圓交于P、Q兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.20.(12分)設(shè)點P在曲線y=x2上,從原點向A(2,4)移動,如果直線OP,曲線y=x2及直線x=2所圍成的面積分別記為S1、S2.(1)當S1=S2時,求點P的坐標;(2)當S1+S2有最小值時,求點P的坐標和最小值.21.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系.已知直線的極坐標方程為,曲線的極坐標方程為(1)設(shè)是參數(shù),若,求直線的參數(shù)方程;(2)已知直線與曲線交于兩點,設(shè)且,求實數(shù)的值.22.(10分)已知a、b、c都是正實數(shù),且ab+bc+ca=1求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】分析:先確定函數(shù)奇偶性與單調(diào)性,再利用奇偶性與單調(diào)性解不等式.詳解:因為,所以,為偶函數(shù),因為當時,單調(diào)遞增,所以等價于,即,或,選A.點睛:解函數(shù)不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為同一單調(diào)區(qū)間上的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應(yīng)在外層函數(shù)的定義域內(nèi).2、D【解題分析】

把按照二項式定理展開,可得的展開式的常數(shù)項.【題目詳解】由于故展開式的常數(shù)項為,故選D.【題目點撥】本題考查二項式定理的應(yīng)用,考查了二項式展開式,屬于基礎(chǔ)題.3、C【解題分析】

將甲乙看作一個大的元素與其他元素進行排列,再乘即可得出結(jié)論.【題目詳解】五個人站成一排,其中甲乙相鄰,將甲乙看作一個大的元素與其他3人進行排列,再考慮甲乙順序為,故共種站法.故選:C.【題目點撥】本題考查排列組合的應(yīng)用,求排列組合常用的方法有:元素優(yōu)先法、插空法、捆綁法、隔板法、間接法等,解決排列組合問題對學(xué)生的抽象思維能力和邏輯思維能力要求較高,本題屬于簡單題.4、D【解題分析】

記事件甲乙兩人各自射擊同一目標一次,該目標被擊中,利用獨立事件的概率乘法公式計算出事件的對立事件的概率,再利用對立事件的概率公式可得出事件的概率.【題目詳解】記事件甲乙兩人各自射擊同一目標一次,該目標被擊中,則事件甲乙兩人各自射擊同一目標一次,兩人都未擊中目標,由獨立事件的概率乘法公式得,,故選D.【題目點撥】本題考查獨立事件的概率乘法公式,解題時要弄清楚各事件之間的關(guān)系,可以采用分類討論,本題采用對立事件求解,可簡化分類討論,屬于中等題.5、D【解題分析】試題分析:,,所以??键c:1.函數(shù)的定義域;2.集合的運算。6、A【解題分析】

由得且,把代入二次方程求得,最后對的值進行檢驗.【題目詳解】因為,所以且,所以,解得.當時,,顯然,所以成立,故選A.【題目點撥】本題考查集合的交運算,注意求出參數(shù)的值后要記得檢驗.7、C【解題分析】

對函數(shù)求導(dǎo),將問題轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),將問題轉(zhuǎn)化為來求解,即可求出實數(shù)的取值范圍.【題目詳解】,,令,則.,其中,且函數(shù)單調(diào)遞增.①當時,對任意的,,此時函數(shù)在上單調(diào)遞增,則,合乎題意;②當時,令,得,.當時,;當時,.此時,函數(shù)在處取得最小值,則,不合乎題意.綜上所述,實數(shù)的取值范圍是.故選:C.【題目點撥】本題考查利用函數(shù)的在區(qū)間上的單調(diào)性求參數(shù)的取值范圍,解題時根據(jù)函數(shù)的單調(diào)性轉(zhuǎn)化為導(dǎo)數(shù)的符號來處理,然后利用參變量分離法或分類討論思想轉(zhuǎn)化函數(shù)的最值求解,屬于??碱},屬于中等題。8、C【解題分析】

求△MAF周長的最小值,即求|MA|+|MF|的最小值,設(shè)點M在準線上的射影為D,根據(jù)拋物線的定義,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根據(jù)平面幾何知識,可得當D,M,A三點共線時|MA|+|MD|最小,因此最小值為xA﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周長的最小值為11,故答案為:C.9、A【解題分析】

根據(jù)充分條件和必要條件的定義分別進行判斷即可?!绢}目詳解】因為是平面內(nèi)的任意一條直線,具有任意性,若,由線面垂直的判斷定理,則,所以充分性成立;反過來,若,是平面內(nèi)的任意一條直線,則,所以必要性成立,故“”是“”成立的充要條件。故選:A【題目點撥】本題主要考查了充分條件、必要條件的判斷,意在考查考生對基本概念的掌握情況。10、D【解題分析】

分別判斷命題的真假性,然后再判斷每個選項的真假【題目詳解】,即不存在,命題是假命題若恒成立,⑴時,,即符合條件⑵時,則解得,則命題為真命題故是真命題故選【題目點撥】本題考查了含有“或”“且”“非”命題的真假判定,只需將命題的真假進行判定出來即可,需要解答一元二次不等式,屬于基礎(chǔ)題.11、A【解題分析】

由二項分布的公式即可求得時概率值.【題目詳解】由二項分布公式:.故選A.【題目點撥】本題考查二項分布的公式,由題意代入公式即可求出.12、A【解題分析】

求出展開式中的系數(shù)減2倍的系數(shù)加的系數(shù)即可.【題目詳解】含的項的系數(shù)即求展開式中的系數(shù)減2倍的系數(shù)加的系數(shù)即含的項的系數(shù)是.故選A.【題目點撥】本題考查二項式定理,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】

根據(jù)抽取6個城市作為樣本,得到每個個體被抽到的概率,用概率乘以丙組的數(shù)目,即可得到結(jié)果.【題目詳解】城市有甲、乙、丙三組,對應(yīng)的城市數(shù)分別為4,12,8.

本市共有城市數(shù)24,用分層抽樣的方法從中抽取一個容量為6的樣本,

每個個體被抽到的概率是,丙組中對應(yīng)的城市數(shù)8,則丙組中應(yīng)抽取的城市數(shù)為,故答案為2.【題目點撥】本題主要考查分層抽樣的應(yīng)用以及古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題.分層抽樣適合總體中個體差異明顯,層次清晰的抽樣,其主要性質(zhì)是,每個層次,抽取的比例相同.14、【解題分析】

變換得到,設(shè),求導(dǎo)得到單調(diào)性,畫出圖像得到答案.【題目詳解】由題可知函數(shù)的定義域為函數(shù)有零點,等價于有實數(shù)根,即,設(shè),則.則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且,畫出圖像,如圖所示:根據(jù)圖像知.故答案為:.【題目點撥】本題考查了利用導(dǎo)數(shù)研究零點,參數(shù)分離畫出圖像是解題的關(guān)鍵.15、1【解題分析】

由分布列先求出,再利用公式計算和即可.【題目詳解】解:由題意知:,即;綜上,故(1)正確,(2)(3)錯誤,正確的個數(shù)是1.故答案為:1.【題目點撥】本題考查了離散型隨機變量的期望和方差,屬于基礎(chǔ)題.16、【解題分析】

由已知棱柱體積與棱錐體積可得S到下底面距離與棱柱高的關(guān)系,進一步得到S到上底面距離與棱錐高的關(guān)系,則答案可求.【題目詳解】設(shè)三棱柱的底面積為,高為,則,再設(shè)到底面的距離為,則,得,所以,則到上底面的距離為,所以三棱錐的體積為.故答案為1.【題目點撥】本題考查棱柱、棱錐體積的求法,考查空間想象能力、思維能力與計算能力,考查數(shù)形結(jié)合思想,三棱錐體積為,本題是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)或.【解題分析】

(1)解分式不等式求集合,解絕對值不等式求集合,再求集合的并集;(2)先求集合的補集,再根據(jù)交集和空集的定義求解.【題目詳解】(1)由得即,解得或,所以或;當時,由得,即,所以,所以或.(2)由得,即,所以,由(1)得或,所以,若,則或,即或,所以,的取值范圍是或.【題目點撥】本題考查分式不等式和絕對值不等式的解法,集合的運算,注意端點值.18、(Ⅰ)(x-1)2+(y-1)2【解題分析】試題分析:(Ⅰ)由ρ2=x2+y2,x=ρcosθ,y=ρsinθ試題解析:(Ⅰ)由已知ρ=2(sinθ+cos所以x2+y2=2y+2x由x=2+t,y=-1+t,得y=-1+(x-2),所以直線l的普通方程為x-y-3=0(Ⅱ)由圓的幾何性質(zhì)知點P到直線l的距離的最小值為圓心C到直線l的距離減去圓的半徑,令圓心C到直線l的距離為d,則d=|-1+1-3|所以最小值為32考點:極坐標方程化為直角坐標方程,參數(shù)方程化為普通方程,直線與圓位置關(guān)系19、(1)(2)直線過定點【解題分析】

(1)根據(jù)圓的圓心和半徑寫出圓的標準方程,令求得圓與軸交點的坐標,由此列方程組求得的值,進而求得橢圓的標準方程.(1)根據(jù),利用點斜式設(shè)出直線的方程,并分別代入橢圓方程解出兩點的坐標,由此求得直線的方程,由此求得定點的坐標為.【題目詳解】解:(1)依題意知點A的坐標為,則以點A圓心,以為半徑的圓的方程為:,令得,由圓A與y軸的交點分別為、可得,解得,故所求橢圓的方程為.(2)由得,可知PA的斜率存在且不為0,設(shè)直線-①則-②將①代入橢圓方程并整理得,可得,則,類似地可得,由直線方程的兩點式可得:直線的方程為,即直線過定點,該定點的坐標為.【題目點撥】本小題主要考查圓的標準方程和幾何性質(zhì),考查直線和橢圓的位置關(guān)系,考查直線方程的兩點式以及直線過定點的問題.屬于中檔題.要求直線和橢圓的交點坐標,需要聯(lián)立直線和橢圓的方程,解方程組求得,這里需要較強的運算能力.直線過定點的問題,往往是將含有參數(shù)的部分合并,由此求得直線所過的定點.20、(1),(2),【解題分析】試題分析:(1)可考慮用定積分求兩曲線圍成的封閉圖形面積,直線OP的方程為y=tx,則S1為直線OP與曲線y=x2當x∈(0,t)時所圍面積,所以,S1=∫0t(tx﹣x2)dx,S2為直線OP與曲線y=x2當x∈(t,2)時所圍面積,所以,S2=∫t2(x2﹣tx)dx,再根據(jù)S1=S2就可求出t值.(Ⅱ)由(2)可求當S1+S2,化簡后,為t的三次函數(shù),再利用導(dǎo)數(shù)求最小值,以及相應(yīng)的x值,就可求出P點坐標為多少時,S1+S2有最小值.試題解析:(1)設(shè)點P的橫坐標為t(0<t<2),則P點的坐標為(t,t2),直線OP的方程為y=txS1=∫0t(tx﹣x2)dx=,S2=∫t2(x2﹣tx)dx=,因為S1=S2,,所以t=,點P的坐標為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論