版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省徽縣2023年九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.計算的結(jié)果是A.﹣3 B.3 C.﹣9 D.92.下列航空公司的標(biāo)志中,是軸對稱圖形的是()A. B. C. D.3.若兩個相似三角形的周長之比為1∶4,則它們的面積之比為()A.1∶2 B.1∶4 C.1∶8 D.1∶164.如圖,點(diǎn)P在△ABC的邊AC上,下列條件中不能判斷△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP?AC D.CB2=CP?CA5.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(
)A.35° B.45° C.55° D.65°6.如圖,小彬收集了三張除正面圖案外完全相同的卡片,其中兩張印有中國國際進(jìn)口博覽會的標(biāo)志,另外一張印有進(jìn)博會吉祥物“進(jìn)寶”.現(xiàn)將三張卡片背面朝上放置,攪勻后從中一次性隨機(jī)抽取兩張,則抽到的兩張卡片圖案不相同的概率為()A. B. C. D.7.下列事件中,是必然事件的是()A.拋擲一枚硬幣正面向上 B.從一副完整撲克牌中任抽一張,恰好抽到紅桃C.今天太陽從西邊升起 D.從4件紅衣服和2件黑衣服中任抽3件有紅衣服8.如圖,⊙O是△ABC的外接圓,連接OA、OB,∠C=40°,則∠OAB的度數(shù)為()A.30° B.40° C.50° D.80°9.已知二次函數(shù),則下列說法:①其圖象的開口向上;②其圖象的對稱軸為直線;③其圖象頂點(diǎn)坐標(biāo)為;④當(dāng)時,隨的增大而減?。渲姓f法正確的有()A.1個 B.2個 C.3個 D.4個10.如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊OA在x軸上,OC在y軸上,如果矩形OA'B'C'與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA'B'C'的面積等于矩形OABC面積的,那么點(diǎn)B'的坐標(biāo)是()A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)二、填空題(每小題3分,共24分)11.某商場為方便消費(fèi)者購物,準(zhǔn)備將原來的階梯式自動扶梯改造成斜坡式自動扶梯.如圖所示,已知原階梯式自動扶梯長為,坡角為;改造后的斜坡式自動扶梯的坡角為,則改造后的斜坡式自動扶梯的長度約為________.(結(jié)果精確到,溫馨提示:,,)12.如圖,是的切線,為切點(diǎn),連接.若,則=__________.13.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點(diǎn)E是AB邊的中點(diǎn),點(diǎn)F是BC邊上一動點(diǎn),將△BEF移沿直線EF折疊,得到△GEF,當(dāng)FG∥AC時,BF的長為_____.14.已知△ABC,D、E分別在AC、BC邊上,且DE∥AB,CD=2,DA=3,△CDE面積是4,則△ABC的面積是______15.點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)為_____.16.如圖,ΔABP是由ΔACD按順時針方向旋轉(zhuǎn)某一角度得到的,若∠BAP=60°,則在這一旋轉(zhuǎn)過程中,旋轉(zhuǎn)中心是____________,旋轉(zhuǎn)角度為____________.17.如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)60°后得到△AB′C′,若AB=4,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是_____.(結(jié)果保留π).18.在實數(shù)范圍內(nèi)分解因式:-1+9a4=____________________。三、解答題(共66分)19.(10分)甲、乙兩人分別站在相距6米的A、B兩點(diǎn)練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點(diǎn)H與甲的水平距離AE為4米,現(xiàn)以A為原點(diǎn),直線AB為x軸,建立平面直角坐標(biāo)系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達(dá)式及飛行的最高高度.20.(6分)如圖,拋物線經(jīng)過點(diǎn)A(1,0),B(5,0),C(0,)三點(diǎn),頂點(diǎn)為D,設(shè)點(diǎn)E(x,y)是拋物線上一動點(diǎn),且在x軸下方.(1)求拋物線的解析式;(2)當(dāng)點(diǎn)E(x,y)運(yùn)動時,試求三角形OEB的面積S與x之間的函數(shù)關(guān)系式,并求出面積S的最大值?(3)在y軸上確定一點(diǎn)M,使點(diǎn)M到D、B兩點(diǎn)距離之和d=MD+MB最小,求點(diǎn)M的坐標(biāo).21.(6分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)都在格點(diǎn)上(每個小方格都是邊長為一個單位長度的正方形).(1)請畫出△ABC關(guān)于原點(diǎn)對稱的△A1B1C1;(1)請畫出△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)90°后的△A1B1C1.22.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,∠BOD=140°,求∠BCD的度數(shù).23.(8分)周末,小馬和小聰想用所學(xué)的數(shù)學(xué)知識測量圖書館前小河的寬,測量時,他們選擇河對岸邊的一棵大樹,將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.35m,BD=7m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.24.(8分)如圖,在中,過半徑OD中點(diǎn)C作AB⊥OD交O于A,B兩點(diǎn),且.(1)求OD的長;(2)計算陰影部分的面積.25.(10分)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).(1)如圖,當(dāng)∠APB=45°時,求AB及PD的長;(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大?。?6.(10分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0).(1)求點(diǎn)B的坐標(biāo);(2)已知,C為拋物線與y軸的交點(diǎn).①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);②設(shè)點(diǎn)Q是線段AC上的動點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】利用二次根式的性質(zhì)進(jìn)行化簡即可.【詳解】=|﹣3|=3.故選B.2、C【分析】根據(jù)軸對稱圖形的概念判斷即可.【詳解】解:、不是軸對稱圖形,不合題意;、不是軸對稱圖形,不合題意;、是軸對稱圖形,符合題意;、不是軸對稱圖形,不合題意;故選:.【點(diǎn)睛】本題考查的是軸對稱圖形的概念,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.3、D【分析】相似三角形的周長比等于相似比,面積比等于相似比的平方.【詳解】∵兩個相似三角形的周長之比為1∶4∴它們的面積之比為1∶16故選D.【點(diǎn)睛】本題考查相似三角形的性質(zhì),本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握相似三角形的性質(zhì),即可完成.4、D【分析】觀察圖形可得,與已經(jīng)有一組角∠重合,根據(jù)三角形相似的判定定理,可以再找另一組對應(yīng)角相等,或者∠的兩條邊對應(yīng)成比例.注意答案中的、兩項需要按照比例的基本性質(zhì)轉(zhuǎn)化為比例式再確定.【詳解】解:項,∠=∠,可以判定;項,∠=∠,可以判定;項,,,可以判定;項,,,不能判定.【點(diǎn)睛】本題主要考查了相似三角形的判定定理,結(jié)合圖形,按照定理找到條件是解答關(guān)鍵.5、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點(diǎn)睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.6、D【分析】根據(jù)題意列出相應(yīng)的表格,得到所有等可能出現(xiàn)的情況數(shù),進(jìn)而找出滿足題意的情況數(shù),即可求出所求的概率.【詳解】設(shè)印有中國國際進(jìn)口博覽會的標(biāo)志為“”,印有進(jìn)博會吉祥物“進(jìn)寶”為,由題列表為所有的等可能的情況共有種,抽到的兩卡片圖案不相同的等可能情況共有種,,故選:D.【點(diǎn)睛】本題考查了列表法與樹狀圖法,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、D【分析】必然事件是指在一定條件下一定會發(fā)生的事件,根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:A、拋擲一枚硬幣正面向上,是隨機(jī)事件,故本選項錯誤;
B、從一副完整撲克牌中任抽一張,恰好抽到紅桃,是隨機(jī)事件.故本選項錯誤;
C、今天太陽從西邊升起,是不可能事件,故本選項錯誤;
D、從4件紅衣服和2件黑衣服中任抽3件有紅衣服,是必然事件,故本選項正確.
故選:D.【點(diǎn)睛】本題考查了事件發(fā)生的可能性,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、C【分析】直接利用圓周角定理得出∠AOB的度數(shù),再利用等腰三角形的性質(zhì)得出答案.【詳解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故選:C.【點(diǎn)睛】本題主要考查了三角形的外接圓與外心,圓周角定理.正確得出∠AOB的度數(shù)是解題關(guān)鍵.9、B【分析】利用二次函數(shù)的圖象和性質(zhì)逐一對選項進(jìn)行分析即可.【詳解】①因為其圖象的開口向上,故正確;②其圖象的對稱軸為直線,故錯誤;③其圖象頂點(diǎn)坐標(biāo)為,故錯誤;④因為拋物線開口向上,所以在對稱軸右側(cè),即當(dāng)時,隨的增大而減小,故正確.所以正確的有2個故選:B.【點(diǎn)睛】本題主要考查二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.10、D【分析】利用位似圖形的性質(zhì)得出位似比,進(jìn)而得出對應(yīng)點(diǎn)的坐標(biāo).【詳解】解:∵矩形OA′B′C′的面積等于矩形OABC面積的,
∴兩矩形面積的相似比為:1:2,
∵B的坐標(biāo)是(6,4),∴點(diǎn)B′的坐標(biāo)是:(3,2)或(?3,?2).
故答案為:D.【點(diǎn)睛】此題主要考查了位似變換的性質(zhì),得出位似圖形對應(yīng)點(diǎn)坐標(biāo)性質(zhì)是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、19.1【分析】先在Rt△ABD中,用三角函數(shù)求出AD,最后在Rt△ACD中用三角函數(shù)即可得出結(jié)論.【詳解】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=ABsin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=15°,sin∠ACD=,∴AC=≈≈19.1(m),即:改造后的斜坡式自動扶梯AC的長度約為19.1m.故答案為:19.1.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,解決此問題的關(guān)鍵在于正確理解題意得基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.12、65°【分析】根據(jù)切線長定理即可得出AB=AC,然后根據(jù)等邊對等角和三角形的內(nèi)角和定理即可求出結(jié)論.【詳解】解:∵是的切線,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案為:65°.【點(diǎn)睛】此題考查的是切線長定理和等腰三角形的性質(zhì),掌握切線長定理和等邊對等角是解決此題的關(guān)鍵.13、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點(diǎn)E是AB邊的中點(diǎn),∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【點(diǎn)睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關(guān)鍵.14、25【分析】根據(jù)DE∥AB得到△CDE∽△CAB,再由CD和DA的長度得到相似比,從而確定△ABC的面積.【詳解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴,又∵△CDE面積是4,∴,即,∴△ABC的面積為25.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),解題的關(guān)鍵是掌握相似三角形的面積之比等于相似比的平方.15、【分析】根據(jù)平面直角坐標(biāo)系中,關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)變化規(guī)律,即可得到答案.【詳解】∵平面直角坐標(biāo)系中,關(guān)于原點(diǎn)的對稱點(diǎn)的橫縱坐標(biāo)分別互為相反數(shù),∴點(diǎn)關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)為.故答案是:.【點(diǎn)睛】本題主要考查平面直角坐標(biāo)系中,關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)變化規(guī)律,掌握關(guān)于原點(diǎn)的對稱點(diǎn)的橫縱坐標(biāo)分別互為相反數(shù),是解題的關(guān)鍵.16、,【分析】根據(jù)條件得出AD=AP,AC=AB,確定旋轉(zhuǎn)中心,根據(jù)條件得出∠DAP=∠CAB=90°,確定旋轉(zhuǎn)角度數(shù).【詳解】解:∵△ABP是由△ACD按順時針方向旋轉(zhuǎn)而得,∴△ABP≌△ACD,∴∠DAC=∠PAB=60°,AD=AP,AC=AB,∴∠DAP=∠CAB=90°,∴△ABP是△ACD以點(diǎn)A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°得到的.故答案為:A,90°【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),明確旋轉(zhuǎn)前后的圖形大小和形狀不變,正確確定對應(yīng)角,對應(yīng)邊是解答此題的關(guān)鍵.17、2π.【分析】由題意根據(jù)陰影部分的面積是:扇形BAB′的面積+S△AB′C′-S△ABC-扇形CAC′的面積,分別求得:扇形BAB′的面積和S△AB′C′,S△ABC以及扇形CAC′的面積,進(jìn)而分析即可求解.【詳解】解:扇形BAB′的面積是:,在直角△ABC中,,.扇形CAC′的面積是:,則陰影部分的面積是:扇形BAB′的面積+-扇形CAC′的面積=.故答案為:2π.【點(diǎn)睛】本題考查扇形的面積的計算,正確理解陰影部分的面積是:扇形BAB′的面積+-扇形CAC′的面積是解題的關(guān)鍵.18、【分析】連續(xù)利用2次平方差公式分解即可.【詳解】解:.【點(diǎn)睛】此題考查了實數(shù)范圍內(nèi)分解因式,熟練掌握因式分解的方法是解本題的基礎(chǔ),注意檢查分解要徹底.三、解答題(共66分)19、米.【分析】先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設(shè)拋物線的表達(dá)式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達(dá)式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點(diǎn)睛】本題考核知識點(diǎn):二次函數(shù)的應(yīng)用.解題關(guān)鍵點(diǎn):熟記二次函數(shù)的基本性質(zhì).20、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),當(dāng)x=3時,S有最大值;(3)(0,﹣)【分析】(1)設(shè)出解析式,由待定系數(shù)法可得出結(jié)論;(2)點(diǎn)E在拋物線上,用x去表示y,結(jié)合三角形面積公式即可得出三角形OEB的面積S與x之間的函數(shù)關(guān)系式,再由E點(diǎn)在x軸下方,得出1<x<1,將三角形OEB的面積S與x之間的函數(shù)關(guān)系式配方,即可得出最值;(3)找出D點(diǎn)關(guān)于y軸對稱的對稱點(diǎn)D′,結(jié)合三角形內(nèi)兩邊之和大于第三邊,即可確定當(dāng)MD+MB最小時M點(diǎn)的坐標(biāo).【詳解】解:(1)設(shè)拋物線解析式為y=ax2+bx+c,則,解得:.故拋物線解析式為y=x2﹣4x+.(2)過點(diǎn)E作EF⊥x軸,垂足為點(diǎn)F,如圖1所示.E點(diǎn)坐標(biāo)為(x,x2﹣4x+),F(xiàn)點(diǎn)的坐標(biāo)為(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵點(diǎn)E(x,y)是拋物線上一動點(diǎn),且在x軸下方,∴1<x<1.三角形OEB的面積S=OB?EF=×1×(﹣x2+4x﹣)=﹣(x﹣3)2+(1<x<1=.當(dāng)x=3時,S有最大值.(3)作點(diǎn)D關(guān)于y軸的對稱點(diǎn)D′,連接BD′,如圖2所示.∵拋物線解析式為y=x2﹣4x+=(x﹣3)2﹣,∴D點(diǎn)的坐標(biāo)為(3,﹣),∴D′點(diǎn)的坐標(biāo)為(﹣3,﹣).由對稱的特性可知,MD=MD′,∴MB+MD=MB+MD′,當(dāng)B、M、D′三點(diǎn)共線時,MB+MD′最小.設(shè)直線BD′的解析式為y=kx+b,則,解得:,∴直線BD′的解析式為y=x﹣.當(dāng)x=0時,y=﹣,∴點(diǎn)M的坐標(biāo)為(0,﹣).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、軸對稱的性質(zhì)、利用二次函數(shù)求最值等知識.解題的關(guān)鍵是:(1)能夠熟練運(yùn)用待定系數(shù)法求解析式;(2)利用三角形面積公式找出三角形面積的解析式,再去配方求最值;(3)利用軸對稱的性質(zhì)確定M點(diǎn)的位置.21、(1)見解析;(1)見解析【分析】(1)利用關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征找出A1,B1,C1,然后描點(diǎn)即可;
(1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出A、C的對應(yīng)點(diǎn)A1、C1即可.【詳解】解:(1)如圖,△A1B1C1為所作;(1)如圖,△A1B1C1為所作.【點(diǎn)睛】本題考查了作圖-根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.22、110°【分析】先根據(jù)圓周角定理得到∠A=∠BOD=70°,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)求∠BCD的度數(shù).【詳解】∵∠BOD=140°,∴∠A=∠BOD=70°,∴∠BCD=180°﹣∠A=110°.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了圓內(nèi)接四邊形的性質(zhì).23、20米【分析】先利用CB⊥AD,ED⊥AD得到∠CBA=∠EDA=90,由此證明△ABC∽△ADE,得到,將數(shù)值代入即可求得AB.【詳解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90,∵∠CAB=∠EAD,∴△ABC∽△ADE,∴,∵AD=AB+BD,BD=7,BC=1,DE=1.35,∴,∴AB=20,即河寬為20米.【點(diǎn)睛】此題考查相似三角形的實際應(yīng)用,解決河寬問題.24、(1);(2)【分析】(1)根據(jù)垂徑定理求出BC=,在Rt△OCB中,由勾股定理列方程求解;(2)根據(jù)扇形面積公式和三角形面積公式即可求得陰影部分的面積.【詳解】解:如圖,連接OB,∵AB⊥OD,∴AC=BC=,∵C為OD中點(diǎn),∴OC=,設(shè)OD=x,在Rt△OCB中,由勾股定理得,OC2+BC2=OB2,∴()2+()2=x2,解得x=2∴OD=2.(2)S△OCB=∵OC=1,OB=2,∴∠BOC=60°,∴S扇BOD=,∴陰影部分的面積為:【點(diǎn)睛】本題考查利用垂徑定理求半徑長及扇形面積公式,垂徑定理是解決圓中線段長的常用重要定理.25、(1),;(2)的最大值為1【分析】(1)作輔助線,過點(diǎn)A作AE⊥PB于點(diǎn)E,在Rt△PAE中,已知∠APE,AP的值,根據(jù)三角函數(shù)可將AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根據(jù)勾股定理可將AB的值求出;
求PD的值有兩種解法,解法一:可將△PAD繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△P'AB,可得△PAD≌△P'AB,求PD長即為求P′B的長,在Rt△AP′P中,可將PP′的值求出,在Rt△PP′B中,根據(jù)勾股定理可將P′B的值求出;
解法二:過點(diǎn)P作AB的平行線,與DA的延長線交于F,交PB于G,在Rt△AEG中,可求出AG,EG的長,進(jìn)而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根據(jù)勾股定理可將PD的值求出;
(2)將△PAD繞點(diǎn)A順時針旋轉(zhuǎn)90°,得到△P'AB,PD的最大值即為P'B的最大值,故當(dāng)P'、P、B三點(diǎn)共線時,P'B取得最大值,根據(jù)P'B=PP'+PB可求P'B的最大值,此時∠APB=180°-∠APP'=135°.【詳解】(1)①如圖,作AE⊥PB于點(diǎn)E,∵△APE中,∠APE=45°,PA=,∴AE=PE=×=1,∵PB=4,∴BE=PB﹣PE=3,在Rt△ABE中,∠AEB=90°,∴AB==.②解法一:如圖,因為四邊形A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物探課程設(shè)計報告總結(jié)
- 礦井通風(fēng)課程設(shè)計心得
- 綜合通信系統(tǒng)課程設(shè)計
- 電工電子課程設(shè)計概述
- 英文秋天主題課程設(shè)計
- 研學(xué)谷物分揀課程設(shè)計
- 線上公交類培訓(xùn)課程設(shè)計
- 按鍵電燈課程設(shè)計
- 職業(yè)素養(yǎng)課程設(shè)計總結(jié)
- 自然教育課程設(shè)計冬天
- 網(wǎng)絡(luò)運(yùn)營代銷合同范例
- 2024年新人教版七年級上冊歷史 第14課 絲綢之路的開通與經(jīng)營西域
- 《臨床放射生物學(xué)》課件
- 腸造口還納術(shù)手術(shù)配合
- 植保無人機(jī)安全飛行
- 2024年10月自考04532財務(wù)會計專題試題及答案含解析
- 醫(yī)療糾紛事件匯報
- 2024年村干部個人工作總結(jié)例文(3篇)
- 2024年中國電信運(yùn)營商服務(wù)合同
- 2025屆山東省即墨一中物理高三第一學(xué)期期末綜合測試試題含解析
- 健身房的考勤管理制度
評論
0/150
提交評論