2023-2024學(xué)年甘肅省蘭州市七里河區(qū)蘭州五十五中高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
2023-2024學(xué)年甘肅省蘭州市七里河區(qū)蘭州五十五中高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
2023-2024學(xué)年甘肅省蘭州市七里河區(qū)蘭州五十五中高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
2023-2024學(xué)年甘肅省蘭州市七里河區(qū)蘭州五十五中高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
2023-2024學(xué)年甘肅省蘭州市七里河區(qū)蘭州五十五中高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年甘肅省蘭州市七里河區(qū)蘭州五十五中高考數(shù)學(xué)全真模擬密押卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.2.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.3.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個4.已知函數(shù)滿足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設(shè),則關(guān)于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線6.在中,,則()A. B. C. D.7.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.8.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)9.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.10.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②11.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件12.?dāng)?shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.14.的展開式中的常數(shù)項為__________.15.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標(biāo),則點落在圓內(nèi)的概率為______________.16.已知函數(shù),則曲線在處的切線斜率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設(shè)為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(?。┳C明:平分線段(其中為坐標(biāo)原點);(ⅱ)當(dāng)取最小值時,求點的坐標(biāo).18.(12分)設(shè)點,動圓經(jīng)過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設(shè),,求證:為定值.19.(12分)某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.21.(12分)在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

據(jù)題意以菱形對角線交點為坐標(biāo)原點建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運算計算出結(jié)果.【詳解】設(shè)與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.2、D【解析】

根據(jù)題意,求得的坐標(biāo),根據(jù)點在橢圓上,點的坐標(biāo)滿足橢圓方程,即可求得結(jié)果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標(biāo)為,則,易知點坐標(biāo),將點坐標(biāo)代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據(jù)題意求得點的坐標(biāo),屬中檔題.3、C【解析】

求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認(rèn)識,本題中集合都是曲線上的點集.4、B【解析】

結(jié)合函數(shù)的對應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.5、C【解析】

根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實軸在y軸上的雙曲線,

故選C.【點睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.6、A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.7、A【解析】

根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.8、C【解析】

由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.9、A【解析】

由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計算能力,屬于中檔題.10、C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當(dāng)直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.11、D【解析】

通過列舉法可求解,如兩角分別為時【詳解】當(dāng)時,,但,故充分條件推不出;當(dāng)時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應(yīng)用,屬于基礎(chǔ)題12、D【解析】

用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應(yīng)用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)直線的方程為,與聯(lián)立得到A點坐標(biāo),由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.14、31【解析】

由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數(shù)項為:,得解.【詳解】解:,則的展開式中的常數(shù)項為:.故答案為:31.【點睛】本題考查二項式定理及其展開式的通項公式,求某項的導(dǎo)數(shù),考查計算能力.15、【解析】

連續(xù)擲兩次骰子共有種結(jié)果,列出滿足條件的結(jié)果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結(jié)果,而滿足條件的結(jié)果為:共有11種結(jié)果,根據(jù)古典概型概率公式,可得所求概率.故答案為:【點睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.16、【解析】

求導(dǎo)后代入可構(gòu)造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問題,考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(?。┮娊馕觯áⅲc的坐標(biāo)為.【解析】

(1)由題意得,再由的關(guān)系求出,即可得橢圓的標(biāo)準(zhǔn)方程;(2)(i)設(shè),的中點為,,設(shè)直線的方程為,代入橢圓方程中,運用根與系數(shù)的關(guān)系和中點坐標(biāo)公式,結(jié)合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值時的條件獲得等量關(guān)系,從而確定點的坐標(biāo).【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設(shè),的中點為,(?。┳C明:由,可設(shè)直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當(dāng)取最小值時,點的坐標(biāo)為【點睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運用,運用根與系數(shù)的關(guān)系和中點坐標(biāo)公式,同時考查弦長公式,屬于較難題.18、(1);(2)見解析.【解析】

(1)已知點軌跡是以為焦點,直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直線方程與拋物線方程聯(lián)立消元應(yīng)用韋達(dá)定理得,,由,,用橫坐標(biāo)表示出,然后計算,并代入,可得結(jié)論.【詳解】(1)設(shè)動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準(zhǔn)線的拋物線,設(shè)其方程為,則,解得.∴曲線的方程為;(2)證明:設(shè)直線方程為,,則,設(shè),由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設(shè)而不求的思想方法,即設(shè)交點坐標(biāo),設(shè)直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應(yīng)用韋達(dá)定理得,,代入題中其他條件所求式子中化簡變形.19、(1)(2)【解析】

(1)根據(jù)題意即可寫出該批次產(chǎn)品長度誤差的絕對值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標(biāo)準(zhǔn)長度的概率為0.4,即可求出隨機抽取2件產(chǎn)品,都不是標(biāo)準(zhǔn)長度產(chǎn)品的概率,由對立事件的概率公式即可得到隨機抽取2件產(chǎn)品,至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當(dāng)不符合要求時,設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計為.(2)由(1)可知任取一件產(chǎn)品是標(biāo)準(zhǔn)長度的概率為0.4,設(shè)至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率為,由題意,又,解得,所以符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發(fā)生的概率公式的應(yīng)用,對立事件的概率公式的應(yīng)用,解題關(guān)鍵是對題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.20、(1);(2)【解析】

(1)根據(jù)正弦定理化簡得到,故,得到答案.(2)計算,再利用面積公式計算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當(dāng)時等號成立.,故,,故△ABC面積的最大值為.【點睛】本題考查了正弦定理,面積公式,均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.21、(Ⅰ)(t為參數(shù)),;(Ⅱ)1.【解析】

(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論