![2023-2024學年遼寧撫順市六校聯(lián)合體高三第四次模擬考試數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view10/M01/2F/22/wKhkGWXC42CADTmhAAIon9apO2E524.jpg)
![2023-2024學年遼寧撫順市六校聯(lián)合體高三第四次模擬考試數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view10/M01/2F/22/wKhkGWXC42CADTmhAAIon9apO2E5242.jpg)
![2023-2024學年遼寧撫順市六校聯(lián)合體高三第四次模擬考試數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view10/M01/2F/22/wKhkGWXC42CADTmhAAIon9apO2E5243.jpg)
![2023-2024學年遼寧撫順市六校聯(lián)合體高三第四次模擬考試數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view10/M01/2F/22/wKhkGWXC42CADTmhAAIon9apO2E5244.jpg)
![2023-2024學年遼寧撫順市六校聯(lián)合體高三第四次模擬考試數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view10/M01/2F/22/wKhkGWXC42CADTmhAAIon9apO2E5245.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年遼寧撫順市六校聯(lián)合體高三第四次模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.2.已知變量x,y間存在線性相關關系,其數(shù)據如下表,回歸直線方程為,則表中數(shù)據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.53.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.4.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln25.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當時,(其中e是自然對數(shù)的底數(shù)),若,則實數(shù)a的值為()A. B.3 C. D.6.已知復數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.37.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.9.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.10.已知,,,,.若實數(shù),滿足不等式組,則目標函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值11.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.12.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題二、填空題:本題共4小題,每小題5分,共20分。13.設為橢圓在第一象限上的點,則的最小值為________.14.設等差數(shù)列的前項和為,若,,則______,的最大值是______.15.已知“在中,”,類比以上正弦定理,“在三棱錐中,側棱與平面所成的角為、與平面所成的角為,則________.16.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.18.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關數(shù)據如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據1月到8月的數(shù)據,求出月利潤y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數(shù)據:.19.(12分)已知函數(shù).(1)討論函數(shù)單調性;(2)當時,求證:.20.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.21.(12分)某社區(qū)服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:攝氏度℃)有關.如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據,得下面的頻數(shù)分布表:最高氣溫天數(shù)414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數(shù)學期望的取值范圍?22.(10分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設為曲線上任意一點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.2、A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.3、C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.4、B【解析】
將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數(shù)函數(shù)的最值,是基礎題,.5、B【解析】
根據題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個以4為周期的周期函數(shù),所以,解得,故選:B.【點睛】本題考查函數(shù)周期的求解,涉及對數(shù)運算,屬綜合基礎題.6、A【解析】,故,故選A.7、A【解析】
根據函數(shù)圖像平移原則,即可容易求得結果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎題.8、A【解析】
先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關系,兩角和的正弦公式與誘導公式,解題時要根據已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.9、A【解析】
由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.10、B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標函數(shù)最值是否存在問題,考查了數(shù)形結合思想,考查了不等式的性質應用.11、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數(shù)形結合的解題思想方法,考查思維能力與計算能力,屬于中檔題.12、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質,以及求導數(shù)、單調性和極值,即可得到所求最小值.【詳解】解:設點,,其中,,由,,,可設,導數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時,函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點睛】本題考查橢圓參數(shù)方程的應用,利用三角函數(shù)的恒等變換和導數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運算能力,屬于難題.14、【解析】
利用等差數(shù)列前項和公式,列出方程組,求出首項和公差的值,利用等差數(shù)列的通項公式可求出數(shù)列的通項公式,可求出的表達式,然后利用雙勾函數(shù)的單調性可求出的最大值.【詳解】(1)設等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項公式為;(2),,令,則且,,由雙勾函數(shù)的單調性可知,函數(shù)在時單調遞減,在時單調遞增,當或時,取得最大值為.故答案為:;.【點睛】本題考查等差數(shù)列的通項公式、前項和的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是中檔題.15、【解析】
類比,三角形邊長類比三棱錐各面的面積,三角形內角類比三棱錐中側棱與面所成角.【詳解】,故,【點睛】本題考查類比推理.類比正弦定理可得,類比時有結構類比,方法類比等.16、3【解析】
雙曲線的焦點在軸上,漸近線為,結合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應形式是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數(shù)的單調性可得的最小值,通過恒成立問題,得到關于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據函數(shù)的單調性可知函數(shù)的最小值為,因為恒成立,所以,解得.所以實數(shù)的取值范圍是.【點睛】本題考查分類討論去絕對值,分段函數(shù)求最值,不等式恒成立問題,屬于中檔題.18、(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據線性回歸方程代入9月份的數(shù)據即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.19、(1)見解析(2)見解析【解析】
(1)根據的導函數(shù)進行分類討論單調性(2)欲證,只需證,構造函數(shù),證明,這時需研究的單調性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調遞增,在單調遞減;②當時,由得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增;③當時,,所以在上單調遞增;④當時,由,得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調遞增單調遞減所以.因為,所以,所以.即,所以當時,成立.【點睛】考查求函數(shù)單調性的方法和用函數(shù)的最值證明不等式的方法,難題.20、(1)見詳解;(2).【解析】
(1)因為折紙和粘合不改變矩形,和菱形內部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結AH,因為AB平面BCGE,所以而又,故平面,所以.又因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45063-2024鞋類化學試驗樣品制備通則
- Prasugrel-hydroxy-thiolactone-生命科學試劑-MCE-3743
- 2-3-Dihydroxypropyl-pentadecanoate-生命科學試劑-MCE-1920
- 2025年度酒店客房客房設施設備維修承包經營與備件儲備協(xié)議
- 2025年度二零二五年度玉米種植與農業(yè)觀光旅游項目合作協(xié)議
- 二零二五年度汽車抵押貸款信用評級合同
- 二零二五年度張家界市別墅湖南商品房買賣合同
- 二零二五年度離婚協(xié)議書簡易版(離婚后子女教育協(xié)議)
- 跨界合作小區(qū)內餐飲與其他行業(yè)的合作機會探索
- 個人房屋貸款抵押擔保合同樣本
- 蘇教版四年級數(shù)學下冊第三單元第二課時《常見的數(shù)量關系》課件
- 2025年中考物理總復習《壓強》專項測試卷含答案
- SaaS服務具體應用合同范本2024版版
- 殘疾人掛靠合作合同協(xié)議書范本
- 浙江省臺州市2021-2022學年高一上學期期末質量評估政治試題 含解析
- GB/T 23791-2009企業(yè)質量信用等級劃分通則
- 員工自主報告和舉報事故隱患獎勵匯總表
- 清代文學緒論
- 阿里云數(shù)字化轉型生態(tài)介紹課件
- 《控軋控冷》課件
- 煤礦瓦斯抽采達標暫行規(guī)定
評論
0/150
提交評論