海南省東方市2024屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
海南省東方市2024屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
海南省東方市2024屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
海南省東方市2024屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
海南省東方市2024屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

海南省東方市2024屆高三3月份第一次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則()A. B. C. D.2.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.3.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.4.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.5.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.6.若向量,則()A.30 B.31 C.32 D.337.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.8.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a9.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切10.定義兩種運(yùn)算“★”與“◆”,對任意,滿足下列運(yùn)算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.11.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為()A. B.4 C.2 D.12.已知數(shù)列的前項(xiàng)和為,且,,,則的通項(xiàng)公式()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.14.在等比數(shù)列中,,則________.15.已知集合,若,則__________.16.已知雙曲線的左右焦點(diǎn)分別為,過的直線與雙曲線左支交于兩點(diǎn),,的內(nèi)切圓的圓心的縱坐標(biāo)為,則雙曲線的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點(diǎn),求;(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.18.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.19.(12分)為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計(jì)局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個(gè)體經(jīng)營戶,普查情況如下表所示:普查對象類別順利不順利合計(jì)企事業(yè)單位401050個(gè)體經(jīng)營戶10050150合計(jì)14060200(1)寫出選擇5個(gè)國家綜合試點(diǎn)地區(qū)采用的抽樣方法;(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;(3)以該小區(qū)的個(gè)體經(jīng)營戶為樣本,頻率作為概率,從全國個(gè)體經(jīng)營戶中隨機(jī)選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82820.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問題中,并完成解答.)21.(12分)已知橢圓:的長半軸長為,點(diǎn)(為橢圓的離心率)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)如圖,為直線上任一點(diǎn),過點(diǎn)橢圓上點(diǎn)處的切線為,,切點(diǎn)分別,,直線與直線,分別交于,兩點(diǎn),點(diǎn),的縱坐標(biāo)分別為,,求的值.22.(10分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時(shí)單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時(shí)單調(diào)遞減,對選項(xiàng)逐一驗(yàn)證即可得到正確答案.【詳解】因?yàn)?,所以,所以是減函數(shù),又因?yàn)?,所以,,所以,,所以A,B兩項(xiàng)均錯;又,所以,所以C錯;對于D,,所以,故選D.【點(diǎn)睛】這個(gè)題目考查的是應(yīng)用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.2、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點(diǎn)存在性定理可知,函數(shù)g(x)的零點(diǎn)所在的區(qū)間是(0,1),故選B.3、C【解析】

由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.4、A【解析】

對復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過程要注意.5、C【解析】

由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.6、C【解析】

先求出,再與相乘即可求出答案.【詳解】因?yàn)?所以.故選:C.【點(diǎn)睛】本題考查了平面向量的坐標(biāo)運(yùn)算,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.7、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.8、A【解析】

令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時(shí),g(x)<0,x>0時(shí),g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點(diǎn)睛】解決函數(shù)零點(diǎn)問題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.9、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.10、B【解析】

根據(jù)新運(yùn)算的定義分別得出◆2020和2020★2018的值,可得選項(xiàng).【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點(diǎn)睛】本題考查定義新運(yùn)算,關(guān)鍵在于理解,運(yùn)用新定義進(jìn)行求值,屬于中檔題.11、D【解析】

由復(fù)數(shù)的綜合運(yùn)算求出,再寫出其共軛復(fù)數(shù),然后由模的定義計(jì)算模.【詳解】,.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題.12、C【解析】

利用證得數(shù)列為常數(shù)列,并由此求得的通項(xiàng)公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點(diǎn)睛】本小題考查數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系等基礎(chǔ)知識;考查運(yùn)算求解能力,邏輯推理能力,應(yīng)用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時(shí)和當(dāng)時(shí)的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當(dāng)時(shí),,可得:,或(舍去);當(dāng)時(shí),,可得:(舍去).綜上的值為:.故答案為:.【點(diǎn)睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.14、1【解析】

設(shè)等比數(shù)列的公比為,再根據(jù)題意用基本量法求解公比,進(jìn)而利用等比數(shù)列項(xiàng)之間的關(guān)系得即可.【詳解】設(shè)等比數(shù)列的公比為.由,得,解得.又由,得.則.故答案為:1【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解方法,屬于基礎(chǔ)題.15、1【解析】

分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿足互異性.16、2【解析】

由題意畫出圖形,設(shè)內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質(zhì)結(jié)臺雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標(biāo),結(jié)合已知列式,即可求得雙曲線的離心率.【詳解】設(shè)內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標(biāo)為,.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)6(Ⅱ)【解析】

(Ⅰ)化簡得到直線的普通方程化為,,是以點(diǎn)為圓心,為半徑的圓,利用垂徑定理計(jì)算得到答案.(Ⅱ)設(shè),則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點(diǎn)為圓心,為半徑的圓,設(shè)點(diǎn)到直線的距離為,則,所以.(Ⅱ)的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),,因?yàn)?,所以,所?【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.18、(1),.(2)見解析【解析】

(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時(shí)等號成立.故,即.【點(diǎn)睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.19、(1)分層抽樣,簡單隨機(jī)抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】

(1)根據(jù)題意可以選用分層抽樣法,或者簡單隨機(jī)抽樣法.(2)由已知條件代入公式計(jì)算出結(jié)果,進(jìn)而可以得到結(jié)果.(3)由已知條件計(jì)算出的分布列,進(jìn)而求出的數(shù)學(xué)期望.【詳解】(1)分層抽樣,簡單隨機(jī)抽樣(抽簽亦可).(2)將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得所以有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”.(3)以頻率作為概率,隨機(jī)選擇1家個(gè)體經(jīng)營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計(jì)算可得的分布列為:0123【點(diǎn)睛】本題考查了運(yùn)用數(shù)學(xué)模型解答實(shí)際生活問題,運(yùn)用合理的抽樣方法,計(jì)算以及數(shù)據(jù)的分布列和數(shù)學(xué)期望,需要正確運(yùn)用公式進(jìn)行求解,本題屬于??碱}型,需要掌握解題方法.20、見解析【解析】

選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點(diǎn)睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21、(1);(2).【解析】

(1)因?yàn)辄c(diǎn)在橢圓上,所以,然后,利用,,得出,進(jìn)而求解即可(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達(dá)定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因?yàn)辄c(diǎn)在橢圓上,所以.又因?yàn)?,,所以,所以(舍)?故橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,直線的方程為.據(jù)得.據(jù)題意,得,得,同理,得,所以.又可求,得,,所以.【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程的求解以及聯(lián)立方程求定值的問題,聯(lián)立方程求定值的關(guān)鍵在于利用韋達(dá)定理進(jìn)行消參,屬于中檔題22、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論