版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省蘇州市常熟一中學(xué)數(shù)學(xué)八下期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知一次函數(shù)y=2x+b,其中b<0,函數(shù)圖象可能是()A.A B.B C.C D.D2.直線y=2x+2沿y軸向下平移6個單位后與x軸的交點坐標是()A.(-4,0) B.(-1,0) C.(0,2) D.(2,0)3.下列條件中,不能判定四邊形ABCD是平行四邊形的是()A.AB∥CD,AD=BC B.AB∥CD,∠B=∠DC.AB=CD,AD=BC D.AB∥CD,AB=CD4.關(guān)于反比例函數(shù)y=的下列說法正確的是()①該函數(shù)的圖象在第二、四象限;②A(x1、y1)、B(x2、y2)兩點在該函數(shù)圖象上,若x1<x2,則y1<y2;③當x>2時,則y>-2;④若反比例函數(shù)y=與一次函數(shù)y=x+b的圖象無交點,則b的范圍是-4<b<4.A.①③ B.①④ C.②③ D.②④5.若,若,則的度數(shù)是()A. B. C. D.6.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點,連接DF,F(xiàn)E,則四邊形DBEF的周長是(
)A.5 B.7 C.9 D.117.D、E是△ABC的邊AB、AC的中點,△ABC、△ADE的面積分別為S、S1,則下列結(jié)論中,錯誤的是()A.DE∥BC B.DE=BC C.S1=S D.S1=S8.不能判定四邊形ABCD是平行四邊形的題設(shè)是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AD=BC,∠A=∠C D.AB∥CD,∠B=∠D9.如圖,已知?ABCD中,點M是BC的中點,且AM=6,BD=12,AD=4,則該平行四邊形的面積為()A.24 B.36 C.48 D.7210.如果把分式2xx+y中的x和y都擴大A.不變 B.擴大3倍 C.縮小3倍 D.無法確定二、填空題(每小題3分,共24分)11.如圖,在矩形ABCD,BE平分∠ABC,交AD于點E,F(xiàn)是BE的中點,G是BC的中點,連按EC,若AB=8,BC=14,則FG的長為________。12.在平面直角坐標系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a).如圖,若曲線與此正方形的邊有交點,則a的取值范圍是________.13.如圖,菱形ABCD的邊長為8cm,∠B=45°,AE⊥BC于點E,則菱形ABCD的面積為_____cm2。14.如圖,菱形ABCD的兩條對角線AC,四交于點O,若AC=6,BD=4,則菱形15.斜邊長17cm,一條直角邊長15cm的直角三角形的面積.16.已知菱形ABCD的兩條對角線長分別為12和16,則這個菱形ABCD的面積S=_____.17.如圖,在正方形中,點是對角線上一點,連接,將繞點逆時針方向旋轉(zhuǎn)到,連接,交于點,若,,則線段的長為___________.18.若一個三角形的三邊的比為3:4:5,則這個三角形的三邊上的高之比為__________.三、解答題(共66分)19.(10分)“西瓜足解渴,割裂青瑤膚”,西瓜為夏季之水果,果肉味甜,能降溫去暑;種子含油,可作消遣食品;果皮藥用,有清熱、利尿、降血壓之效.某西瓜批發(fā)商打算購進“黑美人”西瓜與“無籽”西瓜兩個品種的西瓜共70000千克.(1)若購進“黑美人”西瓜的重量不超過“無籽”西瓜重量的倍,求“黑美人”西瓜最多購進多少千克?(2)該批發(fā)商按(1)中“黑美人”西瓜最多重量購進,預(yù)計“黑美人”西瓜售價為4元/千克;“無籽”西瓜售價為5元/千克,兩種西瓜全部售完.由于存儲條件的影響,“黑美人”西瓜與“無籽”西瓜分別有與的損壞而不能售出.天氣逐漸炎熱,西瓜熱賣,“黑美人”西瓜的銷售價格上漲,“無籽”西瓜的銷售價格上漲,結(jié)果售完之后所得的總銷售額比原計劃下降了3000元,求的值.20.(6分)如圖,在平面直角坐標系中,直線l1:y=﹣x+2向下平移1個單位后,得到直線l2,l2交x軸于點A,點P是直線l1上一動點,過點P作PQ∥y軸交l2于點Q(1)求出點A的坐標;(2)連接AP,當△APQ為以PQ為底邊的等腰三角形時,求點P和點Q的坐標;(3)點B為OA的中點,連接OQ、BQ,若點P在y軸的左側(cè),M為直線y=﹣1上一動點,當△PQM與△BOQ全等時,求點M的坐標.21.(6分)關(guān)于的方程有兩個不相等的實數(shù)根.求實數(shù)的取值范圍;是否存在實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.22.(8分)如圖,在四邊形ABCD中,AD⊥CD,BC⊥CD,E為CD的中點,連接AE,BE,BE⊥AE,延長AE交BC的延長線于點F。證明:(1)FC=AD;(2)AB=BC+AD。23.(8分)計算:(1)(2)已知a=+2,b=﹣2,求a2﹣b2的值.24.(8分)暑假期間,小明和父母一起開車到距家200千米的景點旅游.出發(fā)前,汽車油箱內(nèi)儲油45升;當行駛150千米時,發(fā)現(xiàn)油箱剩余油量為30升.(1)已知油箱內(nèi)余油量y(升)是行駛路程x(千米)的一次函數(shù),求y與x的函數(shù)關(guān)系式;(2)當油箱中余油量少于3升時,汽車將自動報警.如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.25.(10分)已知,如圖,正方形的邊長為4厘米,點從點出發(fā),經(jīng)沿正方形的邊以2厘米/秒的速度運動;同時,點從點出發(fā)以1厘米/秒的速度沿向點運動,設(shè)運動時間為t秒,的面積為平方厘米.(1)當時,的面積為__________平方厘米;(2)求的長(用含的代數(shù)式表示);(3)當點在線段上運動,且為等腰三角形時,求此時的值;(4)求與之間的函數(shù)關(guān)系式.26.(10分)計算:(1)2﹣6+3;(2)(﹣)(+)+(2﹣3)2;用指定方法解下列一元二次方程:(3)x2﹣36=0(直接開平方法);(4)x2﹣4x=2(配方法);(5)2x2﹣5x+1=0(公式法);(6)(x+1)2+8(x+1)+16=0(因式分解法)
參考答案一、選擇題(每小題3分,共30分)1、A【解題分析】對照該函數(shù)解析式與一次函數(shù)的一般形式y(tǒng)=kx+b(k,b為常數(shù),k≠0)可知,k=2.故k>0,b<0.A選項:由圖象知,k>0,b<0,符合題意.故A選項正確.B選項:由圖象知,k<0,b<0,不符合題意.故B選項錯誤.C選項:由圖象知,k>0,b>0,不符合題意.故C選項錯誤.D選項:由圖象知,k<0,b>0,不符合題意.故D選項錯誤.故本題應(yīng)選A.點睛:本題考查了一次函數(shù)的圖象與性質(zhì).一次函數(shù)解析式的系數(shù)與其圖象所經(jīng)過象限的關(guān)系是重點內(nèi)容,要熟練掌握.當k>0,b>0時,一次函數(shù)的圖象經(jīng)過一、二、三象限;當k>0,b<0時,一次函數(shù)的圖象經(jīng)過一、三、四象限;當k<0,b>0時,一次函數(shù)的圖象經(jīng)過一、二、四象限;當k<0,b<0時,一次函數(shù)的圖象經(jīng)過二、三、四象限.2、D【解題分析】試題分析:將y=2x+2沿y軸向下平移6個單位后的解析式為:y=2x-4,當y=0時,則x=2,即圖像與x軸的交點坐標為(2,0).考點:一次函數(shù)的性質(zhì)3、A【解題分析】
根據(jù)平行四邊形的判定定理分別進行分析即可.【題目詳解】解:A.不能判定四邊形ABCD是平行四邊形,四邊形可能是等腰梯形,故此選項符合題意;B.AB∥CD,可得∠A+∠D=180°,因為∠B=∠D,∠A+∠B=180°,所以AD∥BC,根據(jù)兩組對邊分別平行的四邊形是平行四邊形,可判定四邊形ABCD是平行四邊形,故此選項不合題意;
C.根據(jù)兩組對邊分別相等的四邊形是平行四邊形,可判定四邊形ABCD是平行四邊形,故此選項不合題意;D.根據(jù)一組對邊平行且相等的四邊形是平行四邊形,可判定四邊形ABCD是平行四邊形,故此選項不合題意;
故選:A.【題目點撥】此題主要考查了平行四邊形的判定,關(guān)鍵是掌握(1)兩組對邊分別平行的四邊形是平行四邊形.(2)兩組對邊分別相等的四邊形是平行四邊形.(3)一組對邊平行且相等的四邊形是平行四邊形.(4)兩組對角分別相等的四邊形是平行四邊形.(5)對角線互相平分的四邊形是平行四邊形.4、B【解題分析】【分析】根據(jù)反比例函數(shù)的圖象與性質(zhì)逐一進行判斷即可得.【題目詳解】①k=-4<0,圖象在二、四象限,故①正確;②若A(x1、y1)在二象限,B(x2、y2)在四象限,滿足了x1<x2,但y1>y2,故②錯誤;③當x=2時,y=-2,因為在每一象限內(nèi),y隨著x的增大而增大,所以當x>2時,y>-2,故③錯誤;④聯(lián)立,則有,整理得:x2+bx+4=0,因為兩函數(shù)圖象無交點,則方程x2+bx+4=0,無實數(shù)根,即b2-4×4<0,所以-4<b<4,故選B.【題目點撥】本題考查了反比例函數(shù)的圖象與性質(zhì),熟練掌握反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.5、A【解題分析】
根據(jù)相似三角形的對應(yīng)角相等可得∠D=∠A.【題目詳解】∵△ABC∽△DEF,∠A=50°,
∴∠D=∠A=50°.
故選:A.【題目點撥】此題考查相似三角形的性質(zhì),熟記相似三角形的對應(yīng)角相等是解題的關(guān)鍵.6、B【解題分析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.7、D【解題分析】
由D、E是△ABC的邊AB、AC的中點得出DE是△ABC的中位線,得出DE∥BC,DE=BC,易證△ADE∽△ABC得出,即可得出結(jié)果.【題目詳解】∵D、E是△ABC的邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∵DE∥BC,∠A=∠A,∴△ADE∽△ABC,∴,即S1=S,∴D錯誤,故選:D.【題目點撥】考查了相似三角形的判定與性質(zhì)、三角形中位線定理等知識,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.8、C【解題分析】
根據(jù)平行四邊形的判定,A、B、D均能判斷是平行四邊形,唯有C不能判定.【題目詳解】因為平行四邊形的判定方法有:兩組對邊分別相等的四邊形是平行四邊形,故B正確;一組對邊平行且相等的四邊形是平行四邊形,故A正確;由AB∥CD,∠B=∠D,可求得∠A=∠C,根據(jù)兩組對角分別相等的四邊形是平行四邊形可以判定,故D也可以判定.連接BD,利用“SSA”不能判斷△ABD與△CDB,C不能判定四邊形ABCD是平行四邊形,故選C.【題目點撥】此題主要考查學(xué)生對平行四邊形的判定的掌握情況.平行四邊形的五種判定方法分別是:(1)兩組對邊分別平行的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形;(3)一組對邊平行且相等的四邊形是平行四邊形;(4)兩組對角分別相等的四邊形是平行四邊形;(5)對角線互相平分的四邊形是平行四邊形.9、C【解題分析】分析:由平行四邊形的性質(zhì),可得△BOM∽△AOD,可得出OB⊥OM,進而可求解其面積.解:AM、BD相交于點O,在平行四邊形ABCD中,可得△BOM∽△AOD,∵點M是BC的中點,即=,、∴==,∵AM=6,BD=12,∴OM=2,OB=4,在△BOM中,22+42=,∴OB⊥OM∴S△ABD=BD?OA=×12×4=24,∴SABCD=2S△ABD=1.故選C.【點評】本題主要考查平行四邊形的性質(zhì),能夠運用相似三角形求解一些簡單的計算問題.10、A【解題分析】
根據(jù)題意得出算式,再進行化簡,即可得出選項.【題目詳解】解:把分式2xx+y中的x和y都擴大3倍為2·3x3x+3【題目點撥】本題考查分式的基本性質(zhì),能熟記分式的基本性質(zhì)的內(nèi)容是解此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、5【解題分析】
根據(jù)BE平分∠ABC,可得∠ABE=45°,△ABE是等腰直角三角形,再根據(jù)勾股定理可得EC,根據(jù)F是BE的中點,G是BC的中點,可判定FG是△?BEC的中位線,即可求得FG=12【題目詳解】∵矩形ABCD中,BE平分∠ABC,∴∠A=90°,∠ABE=45°,∴ABE是等腰直角三角形,∴AE=AB又∵ABCD是矩形,∴AB=BC=14,DC=AB=8,∠EDC=90°,∴DE=AD-AE=14-8=6,EC=ED2∵F是BE的中點,G是BC的中點,∴FG=12故答案為5.【題目點撥】本題考查了角平分線的定義、等腰三角形的判定與性質(zhì)、勾股定理三角形中位線的定義以及三角形中位線的性質(zhì).12、-1≤a≤【解題分析】
根據(jù)題意得出C點的坐標(a-1,a-1),然后分別把A、C的坐標代入求得a的值,即可求得a的取值范圍.【題目詳解】解:反比例函數(shù)經(jīng)過點A和點C.當反比例函數(shù)經(jīng)過點A時,即=3,解得:a=±(負根舍去);當反比例函數(shù)經(jīng)過點C時,即=3,解得:a=1±(負根舍去),則-1≤a≤.故答案為:-1≤a≤.【題目點撥】本題考查的是反比例函數(shù)圖象上點的坐標特點,關(guān)鍵是掌握反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.13、32【解題分析】
根據(jù)AE⊥BC,∠B=45°知△AEB為等腰直角三角形.在Rt△AEB中,根據(jù)勾股定理即可得出AE的長度,根據(jù)面積公式即可得出菱形ABCD的面積.【題目詳解】四邊形ABCD為菱形,則AB=BC=CD=DA=8cm,∵AE⊥BC且∠B=45°,∴△AEB為等腰直角三角形,∴AE=BE,在△AEB中,根據(jù)勾股定理可以得出+=,∴2=,∴AE====4,∴菱形ABCD的面積即為BC×AE=8×4=32.【題目點撥】本題目主要考查菱形的性質(zhì)及面積公式,本題的解題關(guān)鍵在于通過勾股定理得出菱形的高AE的長度.14、4【解題分析】
首先根據(jù)菱形的性質(zhì)可知菱形的對角線垂直平分,然后在Rt△AOD中利用勾股定理求出AD的長,再由菱形的四邊形相等,可得菱形ABCD的周長.【題目詳解】∵四邊形ABCD是菱形,∴AC⊥BD,AO=12AC=3,DO=12在Rt△AOD中,AD=AO∴菱形ABCD的周長為413.故答案為:413.【題目點撥】本題考查了菱形的性質(zhì)以及勾股定理的知識,解答本題的關(guān)鍵是掌握菱形的對角線互相垂直且平分以及勾股定理等知識.15、60cm2【解題分析】試題分析:先根據(jù)勾股定理求得另一條直角邊的長,再根據(jù)直角三角形的面積公式即可求得結(jié)果.由題意得,另一條直角邊的長則直角三角形的面積考點:本題考查的是勾股定理,直角三角形的面積公式點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握勾股定理和直角三角形的面積公式,即可完成.16、1.【解題分析】
根據(jù)菱形的性質(zhì),菱形的面積=對角線乘積的一半.【題目詳解】解:菱形的面積是:.故答案為1.【題目點撥】本題考核知識點:菱形面積.解題關(guān)鍵點:記住根據(jù)對角線求菱形面積的公式.17、【解題分析】
連接EF,過點E作EM⊥AD,垂足為M,設(shè)ME=HE=FH=x,則GH=3-x,從而可得到,于是可求得x的值,最后在Rt△AME中,依據(jù)勾股定理可求得AE的長.【題目詳解】解:如圖所示:連接EF,過點E作EM⊥AD,垂足為M.∵ABCD為正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,∴△MED和△DEF均為等腰直角三角形.∵DE=DF,∠EDH=∠FDH=45°,∴DH⊥EF,EH=HF,∴FH∥BC.設(shè)ME=HE=FH=x,則GH=3﹣x.由FH∥BC可知:,即,解得:,∴.在Rt△AME中,.故答案為:.【題目點撥】本題主要考查的是正方形的性質(zhì)、等腰直角三角形的性質(zhì)和判定、平行線分線段成比例定理、勾股定理的應(yīng)用,求得ME的長是解題的關(guān)鍵.18、20:15:1.【解題分析】
根據(jù)勾股定理的逆定理得到這個三角形是直角三角形,根據(jù)三角形的面積公式求出斜邊上的高,然后計算即可.【題目詳解】解:設(shè)三角形的三邊分別為3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴這個三角形是直角三角形,設(shè)斜邊上的高為h,則×3x×4x=×5x×h,解得,h=,則這個三角形的三邊上的高之比=4x:3x:=20:15:1,故答案為:20:15:1.【題目點撥】本題考查的是勾股定理的逆定理、三角形的面積計算,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.三、解答題(共66分)19、(1)最多(2)【解題分析】
(1)設(shè)購進“黑美人”西瓜千克,則購進“無籽”西瓜千克,根據(jù)購進“黑美人”西瓜的重量不超過“無籽”西瓜重量的倍,即可得出關(guān)于的一元一次不等式,解之取其最大值即可得出結(jié)論;(2)根據(jù)總價=單價×數(shù)量,即可得出關(guān)于的一元二次方程,解之取其正值即可得出結(jié)論.【題目詳解】解:(1)設(shè)購進“黑美人”西瓜千克,則購進“無籽”西瓜千克,依題意,得:,解得:.答:“黑美人”西瓜最多購進40000千克.(2)由題意得:,整理,得:,解得:(舍去).答:的值為1.【題目點撥】本題考查了一元一次不等式的應(yīng)用以及一元二次方程的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式;(2)找準等量關(guān)系,正確列出一元二次方程.20、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)【解題分析】
(1)求出直線l2的解析式為y=﹣x+1,即可求A的坐標;(2)設(shè)點P(x,﹣x+2),Q(x,﹣x+1),由AQ=AP,即可求P點坐標;(3)設(shè)P(n,﹣n+2),M(m,﹣1),則Q(n,﹣n+1),可求出BQ=,OQ=,PM=,QM=,①當△PQM≌△BOQ時,PM=BQ,QM=OQ,結(jié)合勾股定理,求出m;②當△QPM≌△BOQ時,有PM=OQ,QM=BQ,結(jié)合勾股定理,求出m即可.【題目詳解】解:(1)∵直線l1:y=﹣x+2向下平移1個單位后,得到直線l2,∴直線l2的解析式為y=﹣x+1,∵l2交x軸于點A,∴A(2,0);(2)當△APQ為以PQ為底邊的等腰三角形時,∴AQ=AP,∵點P是直線l1上一動點,設(shè)點P(x,﹣x+2),∵過點P作PQ∥y軸交l2于點Q∴Q(x,﹣x+1),∴(﹣x+2)2=(﹣x+1)2,∴x=3,∴P(3,),Q(3,﹣);(3)∵點B為OA的中點,∴B(1,0),∴PQ=BO=1,設(shè)P(n,﹣n+2),M(m,﹣1),則Q(n,﹣n+1),∴BQ=,OQ=,PM=,QM=,①∵△PQM與△BOQ全等,①當△PQM≌△BOQ時,有PM=BQ,QM=OQ,=,=,∴n=2m﹣2,∵點P在y軸的左側(cè),∴n<0,∴m<1,∴m=﹣1,∴M(﹣1,﹣1);②當△QPM≌△BOQ時,有PM=OQ,QM=BQ,=,=,∴n=﹣m,∵點P在y軸的左側(cè),∴n<0,∴m>2,∴m=8,∴M(﹣1,8);綜上所述,M(﹣1,﹣1)或M(﹣1,8).1:y=﹣x+2向下平移1個單位后,得到直線l2,【題目點撥】本題考查一次函數(shù)的綜合;熟練掌握一次函數(shù)的圖象特點,等腰三角形與全等三角形的性質(zhì)是解題的關(guān)鍵.21、(1)且;(2)不存在符合條件的實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根.【解題分析】
由于方程有兩個不相等的實數(shù)根,所以它的判別式,由此可以得到關(guān)于的不等式,解不等式即可求出的取值范圍.首先利用根與系數(shù)的關(guān)系,求出兩根之和與兩根之積,再由方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根,可以得出關(guān)于的等式,解出值,然后判斷值是否在中的取值范圍內(nèi).【題目詳解】解:依題意得,,又,的取值范圍是且;解:不存在符合條件的實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根,理由是:設(shè)方程的兩根分別為,,由根與系數(shù)的關(guān)系有:,又因為方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根,,,由知,,且,不符合題意,因此不存在符合條件的實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根.【題目點撥】本題重點考查了一元二次方程的根的判別式和根與系數(shù)的關(guān)系。22、(1)見解析;(2)見解析【解題分析】
(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答.(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可.【題目詳解】(1)∵AD∥BC(已知),∴∠ADC=∠ECF(兩直線平行,內(nèi)錯角相等),∵E是CD的中點(已知),∴DE=EC(中點的定義).∵在△ADE與△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性質(zhì)).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的對應(yīng)邊相等),∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF,∵AD=CF(已證),∴AB=BC+AD(等量代換).【題目點撥】此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段的垂直平分線上的點到線段的兩個端點的距離相等.23、(1)原式=5;(2)原式=8【解題分析】
(1)根據(jù)完全平方公式、二次根式的乘法和加法可以解答本題;(2)根據(jù)a、b的值可以求得a+b、a-b的值,從而可以求得所求式子的值.【題目詳解】解:(1)==5(2)∵,∴,∴==【題目點撥】本題考查二次根式的化簡求值,解答本題的關(guān)鍵是明確二次根式化簡求值的方法.24、(1)設(shè)y=kx+b,當x=0時,y=2,當x=150時,y=1.∴150k+b=1b="2"解得∴y=x+2.(2)當x=400時,y=×400+2=5>3.∴他們能在汽車報警前回到家.【解題分析】(1)先設(shè)出一次函數(shù)關(guān)系式,再根據(jù)待定系數(shù)法即可求得函數(shù)關(guān)系式;(2)把x=400代入一次函數(shù)關(guān)系式計算出y的值即可得到結(jié)果.25、(1)8;(1)BP=;(2);(3)S.【解題分析】
(1)先確定當t=1時P和Q的位置,再利用三角形面積公式可得結(jié)論;(1)分兩種情況表示BP的長;(2)如圖1,根據(jù)CQ=CP列方程可解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024水電設(shè)施維護保養(yǎng)勞務(wù)分包合同范本3篇
- 專門廠房施工與維護承包協(xié)議(2024年版)一
- 2025年個人門面租賃合同范本(含裝修補償協(xié)議)4篇
- 基于二零二五年度人工智能的視頻內(nèi)容審核服務(wù)合同2篇
- 教育類DIY益智游戲設(shè)計及推廣策略探討
- 現(xiàn)代家庭智能生活場景構(gòu)建
- 2025年版二手房產(chǎn)買賣合同規(guī)范范本4篇
- 未來辦公新模式小學(xué)科學(xué)實驗在辦公領(lǐng)域的應(yīng)用
- 2024造價咨詢服務(wù)合作協(xié)議-工程結(jié)算版3篇
- 文化自覺小學(xué)教育的新使命與挑戰(zhàn)
- 農(nóng)民工工資表格
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級英語下冊寒假提前學(xué)(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 幼兒園籃球課培訓(xùn)
- 統(tǒng)編版(2024新版)七年級《道德與法治》上冊第一單元《少年有夢》單元測試卷(含答案)
- 100道20以內(nèi)的口算題共20份
- 高三完形填空專項訓(xùn)練單選(部分答案)
- 護理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
- 《職業(yè)培訓(xùn)師的培訓(xùn)》課件
- 建筑企業(yè)新年開工儀式方案
評論
0/150
提交評論