2022年山東省棗莊市山亭區(qū)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
2022年山東省棗莊市山亭區(qū)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
2022年山東省棗莊市山亭區(qū)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
2022年山東省棗莊市山亭區(qū)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
2022年山東省棗莊市山亭區(qū)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列說法正確的個數(shù)是()①相等的弦所對的弧相等;②相等的弦所對的圓心角相等;③長度相等的弧是等弧;④相等的弦所對的圓周角相等;⑤圓周角越大所對的弧越長;⑥等弧所對的圓心角相等;A.個 B.個 C.個 D.個2.如圖,線段是⊙的直徑,弦,垂足為,點是上任意一點,,則的值為()A. B. C. D.3.如圖,點A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,則∠BOC等于()A.60° B.70° C.120° D.140°4.兩個相似三角形的對應(yīng)邊分別是15cm和23cm,它們的周長相差40cm,則這兩個三角形的周長分別是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm5.如圖,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,則BC的值為()A.8 B.9 C.10 D.126.如圖,在平面直角坐標(biāo)系中,菱形的邊在軸的正半軸上,反比例函數(shù)的圖象經(jīng)過對角線的中點和頂點.若菱形的面積為12,則的值為().A.6 B.5 C.4 D.37.袋中裝有5個白球,3個黑球,除顏色外均相同,從中一次任摸出一個球,則摸到黑球的概率是()A. B. C. D.8.x=1是關(guān)于x的一元二次方程x2+ax﹣2b=0的解,則2a﹣4b的值為()A.﹣2 B.﹣1 C.1 D.29.下列方程中,沒有實數(shù)根的是()A.x2﹣2x﹣3=0 B.(x﹣5)(x+2)=0C.x2﹣x+1=0 D.x2=110.已知函數(shù)的圖象經(jīng)過點(2,3),下列說法正確的是()A.y隨x的增大而增大 B.函數(shù)的圖象只在第一象限C.當(dāng)x<0時,必y<0 D.點(-2,-3)不在此函數(shù)的圖象上二、填空題(每小題3分,共24分)11.已知,則的值是_____________.12.某圓錐的底面半徑是2,母線長是6,則該圓錐的側(cè)面積等于________.13.如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.14.等腰△ABC的腰長與底邊長分別是方程x2﹣6x+8=0的兩個根,則這個△ABC的周長是_____.15.分解因式:=__________16.小明家的客廳有一張直徑為1.2米,高0.8米的圓桌BC,在距地面2米的A處有一盞燈,圓桌的影子為DE,依據(jù)題意建立平面直角坐標(biāo)系,其中D點坐標(biāo)為(2,0),則點E的坐標(biāo)是_____.17.如圖,AB為⊙O的直徑,點D是弧AC的中點,弦BD,AC交于點E,若DE=2,BE=4,則tan∠ABD=_____.18.如圖,,,則的度數(shù)是__________.三、解答題(共66分)19.(10分)解方程:(1)(公式法)(2)20.(6分)直線與雙曲線只有一個交點,且與軸、軸分別交于、兩點,AD垂直平分,交軸于點.(1)求直線、雙曲線的解析式;(2)過點作軸的垂線交雙曲線于點,求的面積.21.(6分)如圖所示,小吳和小黃在玩轉(zhuǎn)盤游戲,準(zhǔn)備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤甲、乙,每個轉(zhuǎn)盤被分成面積相等的幾個扇形區(qū)域,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字,游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動后,指針?biāo)干刃螀^(qū)域內(nèi)的數(shù)字之和為4,5或6時,則小吳勝;否則小黃勝.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域為止)(1)這個游戲規(guī)則對雙方公平嗎?說說你的理由;(2)請你設(shè)計一個對雙方都公平的游戲規(guī)則.22.(8分)請完成下面的幾何探究過程:(1)觀察填空如圖1,在Rt△ABC中,∠C=90°,AC=BC=4,點D為斜邊AB上一動點(不與點A,B重合),把線段CD繞點C順時針旋轉(zhuǎn)90°得到線段CE,連DE,BE,則①∠CBE的度數(shù)為____________;②當(dāng)BE=____________時,四邊形CDBE為正方形.(2)探究證明如圖2,在Rt△ABC中,∠C=90°,BC=2AC=4,點D為斜邊AB上一動點(不與點A,B重合),把線段CD繞點C順時針旋轉(zhuǎn)90°后并延長為原來的兩倍得到線段CE,連DE,BE則:①在點D的運動過程中,請判斷∠CBE與∠A的大小關(guān)系,并證明;②當(dāng)CD⊥AB時,求證:四邊形CDBE為矩形(3)拓展延伸如圖2,在點D的運動過程中,若△BCD恰好為等腰三角形,請直接寫出此時AD的長.23.(8分)如圖,在矩形ABCD中,AB=6,BC=8,點E是BC邊上的一個動點(不與點B.

C重合),連結(jié)AE,并作EF⊥AE,交CD邊于點F,連結(jié)AF.設(shè)BE=x,CF=y.(1)求證:△ABE∽△ECF;(2)當(dāng)x為何值時,y的值為2;24.(8分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.25.(10分)若,且2a-b+3c=21.試求a∶b∶c.26.(10分)如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點,與軸交于點,直線經(jīng)過,兩點,拋物線的頂點為,對稱軸與軸交于點.(1)求此拋物線的解析式;(2)求的面積;(3)在拋物線上是否存在一點,使它到軸的距離為4,若存在,請求出點的坐標(biāo),若不存在,則說明理由.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)圓的相關(guān)知識和性質(zhì)對每個選項進行判斷,即可得到答案.【詳解】解:在同圓或等圓中,相等的弦所對的弧相等;故①錯誤;在同圓或等圓中,相等的弦所對的圓心角相等;故②錯誤;在同圓或等圓中,長度相等的弧是等?。还盛坼e誤;在同圓或等圓中,相等的弦所對的圓周角相等;故④錯誤;在同圓或等圓中,圓周角越大所對的弧越長;故⑤錯誤;等弧所對的圓心角相等;故⑥正確;∴說法正確的有1個;故選:A.【點睛】本題考查了弧,弦,圓心角,圓周角定理,要求學(xué)生對基本的概念定理有透徹的理解,解題的關(guān)鍵是熟練掌握所學(xué)性質(zhì)定理.2、D【分析】只要證明∠CMD=△COA,求出cos∠COA即可.【詳解】如圖1中,連接OC,OM.設(shè)OC=r,∴,∴r=5,∵AB⊥CD,AB是直徑,∴,∴∠AOC=∠COM,∵∠CMD=∠COM,∴∠CMD=∠COA,∴cos∠CMD=cos∠COA=.【點睛】本題考查了圓周角定理,勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會轉(zhuǎn)化的思想思考問題.3、D【解析】試題分析:如圖,連接OA,則∵OA=OB=OC,∴∠BAO=∠ABO=32°,∠CAO=∠ACO=38°.∴∠CAB=∠CAO+∠BAO=1.∵∠CAB和∠BOC上同弧所對的圓周角和圓心角,∴∠BOC=2∠CAB=2.故選D.4、C【解析】根據(jù)相似三角形的周長的比等于相似比列出方程,解方程即可.【詳解】設(shè)小三角形的周長為xcm,則大三角形的周長為(x+40)cm,

由題意得,,

解得,x=75,

則x+40=115,故選C.5、D【解析】試題分析:由DE∥BC可推出△ADE∽△ABC,所以.因為AD=5,BD=10,DE=4,所以,解得BC=1.故選D.考點:相似三角形的判定與性質(zhì).6、C【解析】首先設(shè)出A、C點的坐標(biāo),再根據(jù)菱形的性質(zhì)可得D點坐標(biāo),再根據(jù)D點在反比例函數(shù)上,再結(jié)合面積等于12,解方程即可.【詳解】解:設(shè)點的坐標(biāo)為,點的坐標(biāo)為,則,點的坐標(biāo)為,∴,解得,,故選:C.【點睛】本題主要考查反比例函數(shù)和菱形的性質(zhì),關(guān)鍵在于菱形的對角線相互平分且垂直.7、B【解析】先求出球的總個數(shù),根據(jù)概率公式解答即可.【詳解】因為白球5個,黑球3個一共是8個球,所以從中隨機摸出1個球,則摸出黑球的概率是.故選B.【點睛】本題考查了概率公式,明確概率的意義是解答問題的關(guān)鍵,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整體代入的方法計算2a-4b的值即可.【詳解】將x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故選:A.【點睛】本題考查了一元二次方程的解的定義.一元二次方程的解就是能夠使方程左右兩邊相等的未知數(shù)的值.9、C【分析】分別計算出各選項中方程的判別式或方程的根,從而做出判斷.【詳解】解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有兩個不相等的實數(shù)根,不符合題意;B.方程(x﹣5)(x+2)=0的兩根分別為x1=5,x2=﹣2,不符合題意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,沒有實數(shù)根,符合題意;D.方程x2=1的兩根分別為x1=1,x2=﹣1,不符合題意;故選:C.【點睛】本題考查了根的判別式,牢記“當(dāng)△<0時,方程無實數(shù)根”是解題的關(guān)鍵.10、C【解析】∵圖象經(jīng)過點(2,3),∴k=2×3=6>0,∴圖象在第一、三象限.∴只有C正確.故選C.二、填空題(每小題3分,共24分)11、【分析】設(shè)a=3k,則b=4k,代入計算即可.【詳解】設(shè)a=3k,則b=4k,∴.故答案為:.【點睛】本題考查了比例的性質(zhì).熟練掌握k值法是解答本題的關(guān)鍵.12、【分析】根據(jù)圓錐的側(cè)面積公式即可得.【詳解】圓錐的側(cè)面積公式:,其中為底面半徑,為圓錐母線則該圓錐的側(cè)面積為故答案為:.【點睛】本題考查了圓錐的側(cè)面積公式,熟記公式是解題關(guān)鍵.13、1【解析】首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應(yīng)邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據(jù)題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【點睛】此題考查了相似三角形的判定與性質(zhì),三角函數(shù)的定義.此題難度適中,解題的關(guān)鍵是準(zhǔn)確作出輔助線,注意轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用.14、11【詳解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰長與底邊長分別是方程的兩個根,∴當(dāng)?shù)走呴L和腰長分別為2和4時,滿足三角形三邊關(guān)系,此時△ABC的周長為:2+4+4=11;當(dāng)?shù)走呴L和腰長分別為4和2時,由于2+2=4,不滿足三角形三邊關(guān)系,△ABC不存在.∴△ABC的周長=11.故答案是:1115、【解析】分解因式的方法為提公因式法和公式法及分組分解法.原式==a(3+a)(3-a).16、(4,0)【解析】根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【點睛】本題考查了中心投影,相似三角形的判定和性質(zhì),正確的識別圖形是解題的關(guān)鍵.17、【分析】根據(jù)圓周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根據(jù)相似三角形的性質(zhì)求出AD,根據(jù)正切的定義解答即可.【詳解】∵點D是弧AC的中點,∴,∴∠DAC=∠ABD,又∵∠ADE=∠BDA,∴△ADE∽△BDA,∴,即,解得:AD=2,∵AB為⊙O的直徑,∴∠ADB=90°,∴tan∠ABD=tan∠DAE.故答案為:.【點睛】本題考查了相似三角形的判定和性質(zhì)、圓周角定理、正切的定義,掌握相似三角形的判定定理和性質(zhì)定理是解答本題的關(guān)鍵.18、【分析】根據(jù)三角形外角定理求解即可.【詳解】∵,且∴故填:.【點睛】本題主要考查三角形外角定理,熟練掌握定理是關(guān)鍵.三、解答題(共66分)19、(1),(2),【分析】(1)利用公式法解一元二次方程,即可得到答案;(2)利用因式分解法解一元二次方程,即可得到答案.【詳解】解:(1),∵,,,∴,∴,∴,;(2),∴,∴,∴或,∴,.【點睛】本題考查了解一元二次方程,解題的關(guān)鍵是熟練掌握一元二次方程的方法和步驟.20、(1);;(2).【分析】(1)由題意利用待定系數(shù)法求一次函數(shù)以及反比例函數(shù)解析式即可;(2)根據(jù)題意求出BE和BD的值,運用三角形面積公式即可得解.【詳解】解:(1)由已知得,,∴.將點、點坐標(biāo)代入,得,解得,直線解析式為;將點坐標(biāo)代入得,∴反比例函數(shù)的解析式為.(2)∵E和B同橫軸坐標(biāo),∴當(dāng)時,即,∵,,D(1,0)∴BD=1,即為以BE為底的高,∴.【點睛】本題考查反比例函數(shù)和幾何圖形的綜合問題,熟練掌握待定系數(shù)法求反比例函數(shù)解析式以及運用數(shù)形結(jié)合思維分析是解題的關(guān)鍵.21、(1)不公平(2)【解析】解:列表或畫樹狀圖正確,轉(zhuǎn)盤甲

轉(zhuǎn)盤乙

1

2

3

4

5

1

(1,1)和為2

(2,1)和為3

(3,1)和為4

(4,1)和為5

(5,1)和為6

2

(1,2)和為3

(2,2)和為4

(3,2)和為5

(4,2)和為6

(5,2)和為7

3

(1,3)和為4

(2,3)和為5

(3,3)和為6

(4,3)和為7

(5,3)和為8

4

(1,4)和為5

(2,4)和為6

(3,4)和為7

(4,4)和為8

(5,4)和為9

(1)數(shù)字之和一共有20種情況,和為4,5或6的共有11種情況,∵P(小吳勝)=>P(小黃勝)=,∴這個游戲不公平;(2)新的游戲規(guī)則:和為奇數(shù)小吳勝,和為偶數(shù)小黃勝.理由:數(shù)字和一共有20種情況,和為偶數(shù)、奇數(shù)的各10種情況,∴P(小吳勝)=P(小黃勝)=.22、(1)①45°,②;(2)①,理由見解析,②見解析;(3)或【分析】(1)①由等腰直角三角形的性質(zhì)得出,由旋轉(zhuǎn)的性質(zhì)得:,,證明,即可得出結(jié)果;②由①得,求出,作于,則是等腰直角三角形,證出是等腰直角三角形,求出,證出四邊形是矩形,再由垂直平分線的性質(zhì)得出,即可得出結(jié)論;(2)①證明,即可得出;②由垂直的定義得出,由相似三角形的性質(zhì)得出,即可得出結(jié)論;(3)存在兩種情況:①當(dāng)時,證出,由勾股定理求出,即可得出結(jié)果;②當(dāng)時,得出即可.【詳解】解:(1)①,,,由旋轉(zhuǎn)的性質(zhì)得:,,在和中,,,;故答案為:;②當(dāng)時,四邊形是正方形;理由如下:由①得:,,作于,如圖所示:則是等腰直角三角形,,,,,是等腰直角三角形,,,又,四邊形是矩形,又垂直平分,,四邊形是正方形;故答案為:;(2)①,理由如下:由旋轉(zhuǎn)的性質(zhì)得:,,,,,;②,,由①得:,,又,四邊形是矩形;(3)在點的運動過程中,若恰好為等腰三角形,存在兩種情況:①當(dāng)時,則,,,,,,,,;②當(dāng)時,;綜上所述:若恰好為等腰三角形,此時的長為或.【點睛】本題是四邊形綜合題目,考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、矩形的判定、正方形的判定、相似三角形的判定與性質(zhì)、勾股定理以及分類討論等知識;本題綜合性強,熟練掌握旋轉(zhuǎn)的性質(zhì),證明三角形相似是解決問題的關(guān)鍵,注意分類討論.23、(1)見解析;(2)x的值為2或1時,y的值為2【分析】(1)①先判斷出∠BAE=∠CEF,即可得出結(jié)論;(2)利用的相似三角形得出比例式即可建立x,y的關(guān)系式,代入即可;【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴,∵AB=1,BC=8,BE=x,CF=y(tǒng),EC=8?x,∴.∴y=?x2+x.∵y=2,?x2+x=2,解得x1=2,x2=1.∵0<x<8,∴x的值為2或1.【點睛】此題是相似形綜合題,主要考查了矩形的性質(zhì),相似三角形的判定和性質(zhì),解本題的關(guān)鍵是用方程的思想解決問題.24、4【解析】已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點,則直線為的中垂線,直線過點,在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點,則直線為的中垂線,直線過點,,,,即,.【點睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關(guān)鍵.25、4∶8∶7.【解析】試

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論