浙江省公立寄宿學(xué)校2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
浙江省公立寄宿學(xué)校2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
浙江省公立寄宿學(xué)校2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
浙江省公立寄宿學(xué)校2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
浙江省公立寄宿學(xué)校2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省公立寄宿學(xué)校2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.72.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.3.已知關(guān)于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.4.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.5.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.6.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.8.已知焦點為的拋物線的準(zhǔn)線與軸交于點,點在拋物線上,則當(dāng)取得最大值時,直線的方程為()A.或 B.或 C.或 D.9.如圖,在中,,且,則()A.1 B. C. D.10.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.11.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.12.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則下列結(jié)論中正確的是_________.①是周期函數(shù);②的對稱軸方程為,;③在區(qū)間上為增函數(shù);④方程在區(qū)間有6個根.14.已知為偶函數(shù),當(dāng)時,,則__________.15.對于任意的正數(shù),不等式恒成立,則的最大值為_____.16.已知復(fù)數(shù),其中為虛數(shù)單位,若復(fù)數(shù)為純虛數(shù),則實數(shù)的值是__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.18.(12分)在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認(rèn)為“獲獎與女生、男生有關(guān)”.女生男生總計獲獎不獲獎總計附表及公式:其中,.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;(2)若點坐標(biāo)為,圓與直線交于兩點,求的值.20.(12分)已知函數(shù),(Ⅰ)當(dāng)時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當(dāng)時,試判斷的零點個數(shù).21.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.22.(10分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學(xué)的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;(3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題2、B【解析】

根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.3、C【解析】

先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.4、D【解析】

先根據(jù)向量坐標(biāo)運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標(biāo)運算,引入新定義,屬于簡單題目.5、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.6、B【解析】

求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.7、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.8、A【解析】

過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時與拋物線相切,再用判別式或?qū)?shù)計算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.9、C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.10、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.11、D【解析】

設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學(xué)生對這些知識的理解掌握水平.12、B【解析】

利用復(fù)數(shù)的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復(fù)數(shù)的四則運算,需掌握復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

由函數(shù),對選項逐個驗證即得答案.【詳解】函數(shù),是周期函數(shù),最小正周期為,故①正確;當(dāng)或時,有最大值或最小值,此時或,即或,即.的對稱軸方程為,,故②正確;當(dāng)時,,此時在上單調(diào)遞減,在上單調(diào)遞增,在區(qū)間上不是增函數(shù),故③錯誤;作出函數(shù)的部分圖象,如圖所示方程在區(qū)間有6個根,故④正確.故答案為:①②④.【點睛】本題考查三角恒等變換,考查三角函數(shù)的性質(zhì),屬于中檔題.14、【解析】

由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為【點睛】本題考查函數(shù)的奇偶性,對數(shù)函數(shù)的運算,考查運算求解能力15、【解析】

根據(jù)均為正數(shù),等價于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價于恒成立,令則,當(dāng)且僅當(dāng)即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進行等價變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.16、2【解析】

由題,得,然后根據(jù)純虛數(shù)的定義,即可得到本題答案.【詳解】由題,得,又復(fù)數(shù)為純虛數(shù),所以,解得.故答案為:2【點睛】本題主要考查純虛數(shù)定義的應(yīng)用,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運算求解能力,屬于中檔題.18、(Ⅰ),;(Ⅱ)詳見解析.【解析】

(Ⅰ)根據(jù)概率的性質(zhì)知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,從而可得列聯(lián)表,再計算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數(shù)為,不獲獎的人數(shù)為,列聯(lián)表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前提下能認(rèn)為“獲獎與女生,男生有關(guān).”【點睛】本題主要考查獨立性檢驗,以及由頻率分布直方圖求平均數(shù)的問題,熟記獨立性檢驗的思想,以及平均數(shù)的計算方法即可,屬于??碱}型.19、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標(biāo)方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標(biāo)方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應(yīng)的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.20、(Ⅰ)詳見解析;(Ⅱ)1.【解析】

(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當(dāng)時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當(dāng)時,,,∴,∴在恒成立,∴在無零點.③當(dāng)時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論