版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
絕密★啟用前哈爾濱巴彥縣2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)達標(biāo)卷考試范圍:八年級上冊(人教版);考試時間:120分鐘注意事項:1、答題前填寫好自己的姓名、班級、考號等信息2、請將答案正確填寫在答題卡上評卷人得分一、選擇題(共10題)1.(2022年秋?安化縣校級期中)三角形中,最大的內(nèi)角不能小于()A.60°B.30°C.90°D.45°2.(2022年春?鎮(zhèn)江校級月考)下列代數(shù)式:①,②,③,+.其中是分式的有()A.①②③B.①②③④C.①③④D.①②④3.(2022年秋?白城校級期中)在下列多項式中,有相同因式的是()①x2+5x+6②x2+4x+3③x2+6x+8④x2-2x-15⑤x2-x-20.A.只有①⑤B.只有②④C.只有③⑤D.以上答案均不對4.△ABC中,∠A:∠B:∠C=2:3:4,則∠A的度數(shù)為()A.35°B.40°C.70°D.110°5.(2021?和平區(qū)模擬)如圖,?ΔABC??是圓?O??的內(nèi)接正三角形,將?ΔABC??繞圓心?O??順時針旋轉(zhuǎn)?30°??,得到?ΔDEF??,連接?BF??,則?∠BFE??的度數(shù)為?(???)??A.?10°??B.?15°??C.?30°??D.?150°??6.(2005-2006學(xué)年山東省威海市榮成市七年級(上)期末數(shù)學(xué)試卷)下列語句()正確.A.射線比直線短一半B.延長AB到CC.兩點間的線叫做線段D.經(jīng)過三點A,B,C不一定能畫出直線來7.(山東省煙臺市黃務(wù)中學(xué)九年級(上)月考數(shù)學(xué)試卷(11月份)(五四學(xué)制))若分式無論x取何實數(shù)總有意義,則函數(shù)y=(m+1)x+(m-1)的圖象經(jīng)過第()象限.A.一、二、三B.一、三、四C.二、三、四,D.一、二、四8.(安徽省蕪湖市南陵縣八年級(上)期末數(shù)學(xué)試卷)下列屬于分式的有()個,,,,,(x+y)A.1B.2C.3D.49.(湖南省邵陽市邵陽縣石齊學(xué)校九年級(上)期末數(shù)學(xué)試卷(直通班))下列運算中正確的是()A.(-a)2?a3=a6B.-a8÷a4=-a2C.=±2D.(-2a2)3=-8a610.(浙江省杭州市上城區(qū)八年級(上)期末數(shù)學(xué)試卷)已知三角形的兩邊長分別為8和4,則第三邊長可能是()A.3B.4C.8D.12評卷人得分二、填空題(共10題)11.已知x2-y2=12,x-y=4,則x+y=.12.(2022年人教版八年級下第十六章第三節(jié)分式方程(5)練習(xí)卷())在課外活動跳繩時,相同時間內(nèi)小林跳了90下,小群跳了120下.已知小群每分鐘比小林多跳20下,設(shè)小林每分鐘跳下,則可列關(guān)于的方程為.13.(2022年春?蘇州校級月考)(2022年春?蘇州校級月考)如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點P,且∠D+∠C=240°,則∠P=°.14.如圖,Rt△ABC中,∠C=90°.E為AB中點,D為AC上一點,BF∥AC交DE的延長線于點F.AC=6,BC=5.則四邊形FBCD周長的最小值是.15.(山東省菏澤市巨野縣八年級(上)期末數(shù)學(xué)試卷)(2020年秋?巨野縣期末)如圖,點D是△ABC的邊BC的延長線上一點,若∠A=60°,∠ACD=110°,則∠B=.16.(2021?重慶模擬)計算:?2217.(湖南省永州市寧遠(yuǎn)縣八年級(上)期末數(shù)學(xué)試卷)計算:÷=.18.(2022年秋?萊州市期末)當(dāng)a時,分式有意義.19.(北京市東城區(qū)八年級(上)期末數(shù)學(xué)試卷)(2020年秋?東城區(qū)期末)如圖,AB=AC,點E,點D分別在AC,AB上,要使△ABE≌△ACD,應(yīng)添加的條件是.(添加一個條件即可)20.(2022年春?禹州市校級月考)等邊三角形的邊長是6,它的高等于,面積等于.評卷人得分三、解答題(共7題)21.(2014?南寧校級一模)計算:(-1)2011-|-|+(π-2011)0-×tan30°.22.計算:+++.23.(2019-2020學(xué)年浙江省寧波市董玉娣中學(xué)八年級(上)期中數(shù)學(xué)試卷)數(shù)學(xué)課上,李老師出示了如下框中的題目.如圖1,邊長為6的等邊三角形ABC中,點D沿線段AB方向由A向B運動,點F同時從C出發(fā),以相同的速度沿射線BC方向運動,過點D作DE⊥AC,連結(jié)DF交射線AC于點G.求線段AC與EG的數(shù)量關(guān)系,并說明理由.小敏與同桌小聰討論后,進行了如下解答,:(1)特殊情況?探索結(jié)論當(dāng)點D恰好在點B處時,易知線段AC與EG的關(guān)系是:______(直接寫出結(jié)論)(2)特例啟發(fā)?解答題目猜想:線段AC與EG是(1)中的關(guān)系,進行證明:輔助線為“過點D作DH∥BC交AC于點H”,請你利用全等三角形的相關(guān)知識完成解答;(3)拓展結(jié)論?設(shè)計新題如果點D運動到了線段AB的延長線上(如圖2),剛才的結(jié)論是否仍成立?請你說明理由.24.將兩個全等的直角三角板ABC和DEF擺成如圖形式,使點B,F(xiàn),C,D在同一條直線上.(1)求證:AE⊥ED;(2)若PB=BC,請找出圖中于此條件有關(guān)的所有全等三角形,選擇一對說明你的理由.25.(2021?長沙)如圖,在?ΔABC??中,?AD⊥BC??,垂足為?D??,?BD=CD??,延長?BC??至?E??,使得?CE=CA??,連接?AE??.(1)求證:?∠B=∠ACB??;(2)若?AB=5??,?AD=4??,求?ΔABE??的周長和面積.26.(2018?常州)(1)如圖1,已知?EK??垂直平分?BC??,垂足為?D??,?AB??與?EK??相交于點?F??,連接?CF??.求證:?∠AFE=∠CFD??.(2)如圖2,在??R??t?Δ?G??M①用直尺和圓規(guī)在?GN??邊上求作點?Q??,使得?∠GQM=∠PQN??(保留作圖痕跡,不要求寫作法);②在①的條件下,如果?∠G=60°??,那么?Q??是?GN??的中點嗎?為什么?27.(2021?沈陽模擬)如圖,在梯形?ABCD??中,?AD//BC??,?∠B=90°??,?AB=4cm??,?AD=18cm??,?BC=21cm??,點?P??從點?B??出發(fā)沿射線?BC??方向點?C??以?1cm/s??的速度移動,運動幾秒后三角形?CDP??是等腰三角形?參考答案及解析一、選擇題1.【答案】【解答】解:假設(shè)三角形的最大內(nèi)角小于60°,那么三角形的內(nèi)角和就小于180°,與三角形內(nèi)角和為180°相悖.因此三角形中最大的內(nèi)角不能小于60°.故選A.【解析】【分析】根據(jù)三角形內(nèi)角和定理即可解答.2.【答案】【解答】解:①,③,+是分式.故選:C.【解析】【分析】根據(jù)分母中含有字母的式子是分式,可得答案.3.【答案】【解答】解:①x2+5x+6=(x+1)(x+5);②x2+4x+3=(x+1)(x+3);③x2+6x+8=(x+2)(x+4);④x2-2x-15=(x-5)(x+3).⑤x2-x-20=(x-5)(x+4).則①②具有公因式(x+1);②④具有公因式(x+3);③⑤具有公因式(x+4).故選:D.【解析】【分析】根據(jù)十字相乘法各選項分解因式,然后找出有公因式的項即可.4.【答案】【解答】解:∵△ABC中∠A:∠B:∠C=2:3:4,∴設(shè)∠A=2x,∠B=3x,∠C=4x.∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得x=20°,∴∠A=2x=40°.故選B.【解析】【分析】設(shè)∠A=2x,∠B=3x,∠C=4x,再根據(jù)∠A+∠B+∠C=180°求出x的值,進而可得出結(jié)論.5.【答案】解:連接?OE??,?OB??,?∵?將?ΔABC??繞圓心?O??順時針旋轉(zhuǎn)?30°??,得到?ΔDEF??,?∴∠EOB=30°??,?∴∠BFE=1故選:?B??.【解析】連接?OE??,?OB??,根據(jù)旋轉(zhuǎn)的性質(zhì)和圓周角定理即可得到結(jié)論.本題考查了三角形的外接圓與外心,圓周角定理,旋轉(zhuǎn)的性質(zhì)等知識點,正確作出輔助線是解題的關(guān)鍵.6.【答案】【解答】解:A、直線和射線都沒有長短,所以射線比直線短一半錯誤,故本選項錯誤;B、延長AB到C,正確的說法是延長線段AB到C,故本選項錯誤;C、兩點間的線叫做線段,不符合線段的定義,故本選項錯誤;D、若三點A,B,C在一條直線上,則經(jīng)過三點A,B,C能畫出直線來;若三點A,B,C不在一條直線上,則經(jīng)過三點A,B,C不能畫出直線來.所以說經(jīng)過三點A,B,C不一定能畫出直線來,故本選項正確.故選:D.【解析】【分析】根據(jù)直線、射線、線段有關(guān)知識,對每個選項注意判斷得出正確選項.7.【答案】【解答】解:∵若分式無論x取何實數(shù)總有意義,∴x2+2x+m≠0∴x2+2x+1+m-1≠0,∴(x+1)2+(m-1)≠0,∵(x-1)2≥0,∴m-1>0,∴∴m>1時,分式無論x取何實數(shù)總有意義,∴m+1>0,m-1>0,∴函數(shù)y=(m+1)x+(m-1)的圖象經(jīng)過第一、二、三象限,故選A.【解析】【分析】首先根據(jù)分式有意義的條件確定m的取值范圍,從而根據(jù)一次函數(shù)的性質(zhì)確定其經(jīng)過的象限.8.【答案】【解答】解:屬于分式的有:,共有2個.故選B.【解析】【分析】判斷分式的依據(jù)是看分母中是否含有字母,如果含有字母則是分式,如果不含有字母則不是分式.9.【答案】【解答】解:A、(-a)2?a3=a5,原題計算錯誤,故此選項錯誤;B、-a8÷a4=-a4,原題計算錯誤,故此選項錯誤;C、=2,原題計算錯誤,故此選項錯誤;D、(-2a2)3=-8a6,原題計算正確,故此選項正確;故選:D.【解析】【分析】根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;非負(fù)數(shù)a的算術(shù)平方根有雙重非負(fù)性;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘分別進行計算即可.10.【答案】【解答】解:設(shè)第三邊的長為x,∵三角形兩邊的長分別是4和8,∴8-4<x<8+4,即4<x<12.故選C【解析】【分析】設(shè)第三邊的長為x,再由三角形的三邊關(guān)系即可得出結(jié)論.二、填空題11.【答案】【解答】解:由題意得:x2-y2=(x+y)(x-y),∵x2-y2=12,x-y=4,∴x+y=3.故答案為:3.【解析】【分析】運用平方差公式可得x2-y2=(x+y)(x-y),代入所給式子的值可得出x+y的值.12.【答案】【答案】【解析】本題考查了分式方程的應(yīng)用.如果設(shè)小林每分鐘跳x下,那么小群每分鐘跳(x+20)下.題中有等量關(guān)系:小林跳90下所用的時間=小群跳120下所用的時間,據(jù)此可列出方程.【解析】由于小林每分鐘跳x下,所以小群每分鐘跳(x+20)下.根據(jù)相同時間內(nèi)小林跳了90下,小群跳了120下,可知13.【答案】【解答】解:如圖,∵∠D+∠C=240°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=120°.又∵∠DAB的角平分線與∠ABC的外角平分線相交于點P,∴∠PAB+∠ABP=∠DAB+∠ABC+(180°-∠ABC)=90°+(∠DAB+∠ABC)=150°,∴∠P=180°-(∠PAB+∠ABP)=30°.故答案是:30.【解析】【分析】利用四邊形內(nèi)角和是360°可以求得∠DAB+∠ABC=120°.然后由角平分線的性質(zhì),鄰補角的定義求得∠PAB+∠ABP=∠DAB+∠ABC+(180°-∠ABC)=90°+(∠DAB+∠ABC)的度數(shù),所以根據(jù)△ABP的內(nèi)角和定理求得∠P的度數(shù)即可.14.【答案】【解答】解:∵BF∥AC,∴∠EBF=∠EAD,在△BFE和△ADE中,,∴△BFE≌△ADE(ASA),∴BF=AD,∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD,∴當(dāng)FD⊥AC時,F(xiàn)D最短,此時FD=BC=5,∴四邊形FBCD周長的最小值為5+11=16,故答案為16.【解析】【分析】由條件易知△BFE與△ADE全等,從而BF=AD,則BF+CD=AD+CD=AC=6,所以只需FD最小即可,由垂線段最短原理可知,當(dāng)FD垂直AC時最短.15.【答案】【解答】解:∵∠ACD是△ABC的一個外角,∴∠ACD=∠A+∠B,∴∠B=∠ACD-∠A=50°,故答案為:50°.【解析】【分析】根據(jù)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和計算即可.16.【答案】解:原式?=22?=22?=-7??.故答案為:?-7??.【解析】直接利用絕對值的性質(zhì)以及負(fù)整數(shù)指數(shù)冪的性質(zhì)分別化簡得出答案.此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.17.【答案】【解答】解:÷=×=.故答案為:.【解析】【分析】直接利用分式乘除運算法則進而化簡求出答案.18.【答案】【解答】解:由分式有意義,得2a+1≠0,解得a≠-.故答案為:≠-.【解析】【分析】根據(jù)分母不為零分式有意義,可得答案.19.【答案】【解答】解:∵AB=AC,∠BAE=∠DAC,∴當(dāng)添加∠B=∠C時,可利用“ASA”判斷△ABE≌△ACD.故答案為∠B=∠C.【解析】【分析】根據(jù)“ASA”進行添加條件.20.【答案】【解答】解:等邊三角形高線即中線,故D為BC中點,∵AB=6,∴BD=3,∴AD==3,∴等邊△ABC的面積=BC?AD=×6×3=9.故答案為:3,9.【解析】【分析】根據(jù)等邊三角形三線合一的性質(zhì)可得D為BC的中點,即BD=CD,在直角三角形ABD中,已知AB、BD,根據(jù)勾股定理即可求得AD的長,即可求三角形ABC的面積,即可解題.三、解答題21.【答案】【解答】解:原式=-1-+1-×=--=-2.【解析】【分析】分別根據(jù)0指數(shù)冪及負(fù)整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可.22.【答案】【解答】解:原式=+++,=-+-+-+-,=-,=,=.【解析】【分析】首先把分母分解因式,再根據(jù)=-,=-…進行計算,然后可化為-,再通分計算即可.23.【答案】AC=2EG【解析】解:(1)AC與EG的關(guān)系是:AC=2EG.理由:如圖所示,當(dāng)點D恰好在點B處時,點G與點C重合,∵△ABC為等邊三角形,DE⊥AH,∴AE=EG=?1∴AC=2EG,故答案為:AC=2EG;(2)如圖所示,過點D作DH∥BC,交AC于點H,則∠HDG=∠F,∵△ABC是等邊三角形,∴∠ADH=∠AHD=∠A=60°,∴△ADH是等邊三角形,∴AD=DH,又∵點D與F的運動速度相同,∴AD=CF,∴DH=FC,在△DHG和△FCG中,??∠DGH=∠FGC?∴△DHG≌△FCG(AAS),∴HG=CG,∵△ADH為等邊三角形,DE⊥AH,∴AE=EH,∴AC=AH+CH=2EH+2HG=2EG;(3)AC=2EG仍成立,理由:如圖所示,過點D作DH∥BC,交AC的延長線于點H,則∠HDG=∠F,∵△ABC是等邊三角形,∴∠ADH=∠AHD=∠A=60°,∴△ADH是等邊三角形,∴AD=DH,又∵點D與F的運動速度相同,∴AD=CF,∴DH=FC,在△DHG和△FCG中,??∠DGH=∠FGC?∴△DHG≌△FCG(AAS),∴HG=CG,∵△ADH為等邊三角形,DE⊥AH,∴AE=EH,∴AC=AH-CH=2EH-2HG=2(EH-HG)=2EG.(1)根據(jù)△ABC為等邊三角形,DE⊥AH,即可得出AE=EG=?1(2)過點D作DH∥BC,交AC于點H,則∠HDG=∠F,先判定△ADH是等邊三角形,再根據(jù)等量代換得到DH=FC,進而判定△DHG≌△FCG(AAS),得到HG=CG,再根據(jù)△ADH為等邊三角形,DE⊥AH,得出AE=EH,最后得出AC=AH+CH=2EH+2HG=2EG;(3)過點D作DH∥BC,交AC的延長線于點H,則∠HDG=∠F,運用(2)中的方法進行推導(dǎo),即可得出AC=AH-CH=2EH-2HG=2(EH-HG)=2EG.本題屬于三角形綜合題,主要考查了全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì)的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形和等邊三角形,依據(jù)等邊三角形三線合一以及全等三角形的對應(yīng)邊相等進行推導(dǎo).24.【答案】【解答】證明:(1)∵∠A=∠D,∠B+∠A=90°,∴∠B+∠D=90°,∴∠BPD=180°-(∠B+∠D)=90°,∴AB⊥DE;(2)圖中與此條件有關(guān)的全等三角形還有:△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.△BPD≌△BCA.理由:在△BPD與△BCA中,,∴△BPD≌△BCA(AAS).【解析】【分析】(1)由于∠A=∠D,∠B+∠A=90°,所以∠B+∠D=90°,即AB⊥DE.(2)△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.△BPD≌△BCA.根據(jù)AAS即可證明△BPD≌△BCA.25.【答案】解:(1)證明:?∵AD⊥BC??,?BD=CD??,?∴AD??是?BC??的中垂線,?∴AB=AC??,?∴∠B=∠ACB??;(2)在??R??t?∴BD=CD=3??,?AC=AB=CE=5??,?∴BE=2BD+CE=2×3+5=11??,在??R??t??∴CΔABE??SΔABE【解析】(1)證明?AD??是?BC??的中垂線,即可求解;(2)利用勾股定理分別計算出?BD??和?AE??即可求出?ΔABE??的周長和面積.本題考查線段垂直平分線的性質(zhì)、勾股定理,三角形面積的計算等知識,熟練掌握線段垂直平分線的性質(zhì)以及勾股定理的應(yīng)用是解題的關(guān)鍵.26.【答案】(1)證明:如圖1中,?∵EK??垂直平分線段?BC??,?∴FC=FB??,?∴∠CFD=∠BFD??,?∵∠BFD=∠AFE??,?∴∠AFE=∠CFD??.(2)①作點?P??關(guān)于?GN??的對稱點?P′??,連接?P′M??交?GN??于?Q??,連接?PQ??,點?Q??即為所求.理由:?∵GN??垂直平分?PP′??,?∴QP′=QP??,?∠KQP′=∠KQP??,?∵∠GQM=∠KQP′??,?∴∠GQM=∠PQK??,?∴??點?P??即為所求.②結(jié)論:?Q??是?GN??的中點.理由:設(shè)?PP′??交?GN??于?K??.?∵∠G=60°??,?∠GMN=90°??,?∴∠N=30°??,?∵PK⊥KN??,?∴PK=KP′=1?∴PP′=PN=PM??,?∴∠P′=∠PMP′??,?∵∠NPK=∠P′+∠PMP′=60°??,?∴∠PMP′=30°??,?∴∠N=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生物制藥企業(yè)存貨質(zhì)押貸款合同3篇
- 2025年度舞臺租賃服務(wù)合同下載3篇
- 2025年度大型商場DJ現(xiàn)場表演及音響租賃合同2篇
- 二零二五版危險品倉儲安全協(xié)議合同3篇
- 2024聯(lián)合研發(fā)合同3篇帶眉腳
- 2025年度夾板加工及銷售一體化合同范本4篇
- 二零二五版銀行存款賬戶資金調(diào)撥與監(jiān)管合同3篇
- 2025年新型投影顯示屏銷售合同3篇
- 二零二五年度玩具OEM委托生產(chǎn)合同示范文本3篇
- 二零二五年度按摩養(yǎng)生館安全管理與應(yīng)急預(yù)案合同3篇
- 2025年經(jīng)濟形勢會議講話報告
- 北師大版小學(xué)三年級上冊數(shù)學(xué)第五單元《周長》測試卷(含答案)
- 國家安全責(zé)任制落實情況報告3篇
- 2024年度順豐快遞冷鏈物流服務(wù)合同3篇
- 六年級下冊【默寫表】(牛津上海版、深圳版)(漢譯英)
- 合同簽訂培訓(xùn)
- 新修訂《保密法》知識考試題及答案
- 電工基礎(chǔ)知識培訓(xùn)課程
- 鐵路基礎(chǔ)知識題庫單選題100道及答案解析
- 金融AI:顛覆與重塑-深化理解AI在金融行業(yè)的實踐與挑戰(zhàn)
- 住宅樓安全性檢測鑒定方案
評論
0/150
提交評論