版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PartIIIDistributed--ParameterSystems第III篇分布參數(shù)體系Chapter17Partialdifferentialequationsofmotion17--1INTRODUCTIONThediscrete--coordinatesystemsdescribedinPartTwoprovideaconvenientandpracticalapproachtothedynamicresponseanalysisofarbitrarystructures.However,thesolutionsobtainedcanonlyapproximatetheiractualdynamicbehaviorbecausethemotionsarerepresentedbyalimitednumberofdisplacementcoordinates.Theprecisionoftheresultscanbemadeasrefinedasdesiredbyincreasingthenumberofdegreesoffreedomconsideredintheanalyses.Inprinciple,however,aninfinitenumberofcoordinateswouldberequiredtoconvergetotheexactresultsforanyrealstructurehavingdistributedproperties;hencethisapproachtoobtaininganexactsolutionismanifestlyimpossible.Theformalmathematicalprocedureforconsideringthebehaviorofaninfinitenumberofconnectedpointsisbymeansofdifferentialequationsinwhichthepositioncoordinatesaretakenasindependentvariables.Inasmuchastimeisalsoanindependentvariableinadynamicresponseproblem,theformulationoftheequationsofmotioninthiswayleadstopartialdifferentialequations.Differentclassesofcontinuoussystemscanbeidentifiedinaccordancewiththenumberofindependentvariablesrequiredtodescribethedistributionoftheirphysicalproperties.Forexam-ple,thewave--propagationformulasusedinseismologyandgeophysicsarederivedfromtheequationsofmotionexpressedforgeneralthree--dimensionalsolids.Simi-larly,instudyingthedynamicbehaviorofthin-plateorthin--shellstructures,specialequationsofmotionmustbederivedforthesetwo--dimensionalsystems.Inthepresentdiscussion,however,attentionwillbelimitedtoone--dimensionalstructures,thatis,beam--androd--typesystemswhichmayhavevariablemass,damping,andstiffnesspropertiesalongtheirelasticaxes.Thepartialdifferentialequationsofthesesystemsinvolveonlytwoindependentvariables:timeanddistancealongtheelasticaxisofeachcomponentmember.Itispossibletoderivetheequationsofmotionforrathercomplexone--dimensionalstructures,includingassemblagesofmanymembersinthree-dimensionalspace.Moreover,theaxesoftheindividualmembersmightbearbitrarilycurvedinthree--dimensionalspace,andthephysicalpropertiesmightvaryasacomplicatedfunctionofpositionalongtheaxis.However,thesolutionsoftheequationsofmotionforsuchcomplexsystemsgenerallycanbeobtainedonlybynumericalmeans,andinmostcasesadiscrete--coordinateformulationispreferabletoacontinuous--coordinateformulation.Forthisreason,thepresenttreatmentwillbelimitedtosimplesystemsinvolvingmembershavingstraightelasticaxesandassemblagesofsuchmembers.Informulatingtheequationsofmotion,generalvariationsofthephysicalpropertiesalongeachaxiswillbepermitted,althoughinsubsequentsolutionsoftheseequations,thepropertiesofeachmemberwillbeassumedtobeconstant.Becauseoftheseseverelimitationsofthecaseswhichmaybeconsidered,thispresentationisintendedmainlytodemonstratethegeneralconceptsofthepartial--differential--equationformulationratherthantoprovideatoolforsignificantpracticalapplicationtocomplexsystems.Closedformsolutionsthroughthisformulationcan,however,beveryusefulwhentreatingsimpleuniformsystems.Chapter17PartialDifferentialEquationsofMotion17--2BeamFlexure:ElementaryCaseFIGURE17-1Basicbeamsubjectedtodynamicloading:(a)beampropertiesandcoordinates;(b)resultantforcesactingondifferentialelement.Afterdroppingthetwosecond--ordermomenttermsinvolvingtheinertiaandappliedloadings,onegetsThisisthepartialdifferentialequationofmotionfortheelementarycaseofbeamflexure.Thesolutionofthisequationmust,ofcourse,satisfytheprescribedboundaryconditionsatx=0andx=L.17--3BeamFlexure:IncludingAxial--ForceEffectsFIGURE17-2Beamwithstaticaxialloadinganddynamiclateralloading:(a)beamdeflectedduetoloadings;(b)resultantforcesactingondifferentialelement.17--4BeamFlexure:IncludingViscousDampingIntheprecedingformulationsofthepartialdifferentialequationsofmotionforbeam--typemembers,nodampingwasincluded.Nowdistributedviscousdampingoftwotypeswillbeincluded:(1)anexternaldampingforceperunitlengthasrepresentedbyc(x)inFig.8--3and(2)internalresistanceopposingthestrainvelocityasrepresentedbythesecondpartsofEqs.(8--8)and(8--9).17--6AXIALDEFORMATIONS:UNDAMPEDTheprecedingdiscussionsinSections17--2through17--5havebeenconcernedwithbeamflexure,inwhichcasethedynamicdisplacementsareinthedirectiontransversetotheelasticaxis.Whilethisbendingmechanismisthemostcommontypeofbehaviorencounteredinthedynamicanalysisofone--dimensionalmembers,someimportantcasesinvolveonlyaxialdisplacements,e.g.,apilesubjectedtohammerblowsduringthedrivingprocess.Theequationsofmotiongoverningsuchbehaviorcanbederivedbyaproceduresimilartothatusedindevelopingtheequationsofmotionforflexure.However,derivationissimplerfortheaxial--deformationcase,sinceequilibriumneedbeconsideredonlyinonedirectionratherthantwo.Inthisformulation,dampingisneglectedbecauseitusuallyhaslittleeffectonthebehaviorinaxialdeformation.FIGURE17-4Barsubjectedtodynamicaxialdeformations:(a)barpropertiesandcoordinates;(b)forcesactingondifferentialelement.Chapter18Analysisofundampedfreevibration18-1BEAMFLEXURE:ELEMENTARYCASEFollowingthesamegeneralapproachemployedwithdiscrete-parametersys-tems,thefirststepinthedynamic--responseanalysisofadistributed--parametersystemistoevaluateitsundampedmodeshapesandfrequencies.Becauseofthemathematicalcomplicationsoftreatingsystemshavingvariableproperties,thefollowingdiscussionwillbelimitedtobeamshavinguniformpropertiesalongtheirlengthsandtoframesassembledfromsuchmembers.Thisisnotaseriouslimitation,however,becauseitismoreefficienttotreatanyvariable--propertysystemsusingdiscrete-parametermodeling.(17-7)(18-1)(18-2)(18-3)First,letusconsidertheelementarycasepresentedinSection17--2withandsetequaltoconstantsand,respectively.AsshownbyEq.(17--7),thefree--vibrationequationofmotionforthissystemisExampleE18-1.SimpleBeamConsideringtheuniformsimplebeamshowninFig.E18-1a,itsfourknownboundaryconditionsareFIGUREE18-1Simplebeam-vibrationanalysis:(a)basicpropertiesofsimplebeam;(b)firstthreevibrationmodes.第五章無限自由度體系的振動分析5.1運動方程的建立一.彎曲振動方程微段平衡方程撓曲微分方程消去內(nèi)力,得加慣性力,得運動方程二.考慮軸力對彎曲的影響時的彎曲振動方程三.考慮剪切變形與慣性力矩對彎曲的影響時的彎曲振動方程1.考慮剪切變形時的幾何方程桿軸轉(zhuǎn)角截面轉(zhuǎn)角2.慣性力矩的計算單位長度上的慣性力矩3.運動方程4.物理方程5.方程整理幾何方程:物理方程:運動方程:對于等截面桿:對于等截面細(xì)長桿:四.考慮阻尼影響時的彎曲振動方程外阻尼力內(nèi)阻尼力1.粘滯阻尼
2.滯變阻尼不計阻尼時計阻尼時習(xí)題:1.求剪切桿的運動方程。
2.求拉壓桿的運動方程。一.運動方程及其解邊界條件xyxyxy幾何邊界條件力邊界條件混合邊界條件初始條件已知函數(shù)5.2自由振動分析設(shè)方程的特解為代入方程,得方程(1)的通解為運動方程的特解為運動方程的通解由特解的線性組合確定設(shè)方程(2)的特解為代入方程(2),得方程(2)的通解為或二.振型與頻率振型方程xy頻率方程振型18--4BEAMFLEXURE:ORTHOGONALITYOFVIBRATIONMODESHAPESThevibrationmodeshapesderivedforbeamswithdistributedpropertieshaveorthogonalityrelationshipsequivalenttothosedefinedpreviouslyforthediscrete-parametersystems,whichcanbedemonstratedinessentiallythesame—byapplicationofBetti'slaw.ConsiderthebeamshowninFig.18--1.Forthisdiscussion,thebeammayhavearbitrarilyvaryingstiffnessandmassalongitslength,anditcouldhavearbitrarysupportconditions,althoughonlysimplesupportsareshown.Twodifferentvibrationmodes,mandn,areshownforthebeam.Ineachmode,thedisplacedshapeandtheinertialforcesproducingthedisplacementsareindicated.Betti'slawappliedtothesetwodeflectionpatternsmeansthattheworkdonebytheinertialforcesofmodenactingonthedeflectionofmodemisequaltotheworkoftheforcesofmodemactingonthedisplacementofmoden;thatis,(18-31)(18-34)Thefirsttwotermsinthisequationrepresenttheworkdonebytheboundaryverticalsectionforcesofmodenactingontheenddisplacementsofmodemandtheworkdonebytheendmomentsofmodenonthecorrespondingrotationsofmodem.Forthestandardclamped--,hinged--,orfree--endconditions,thesetermswillvanish.However,theycontributetotheorthogonalityrelationshipifthebeamhaselasticsupportsorifithasalumpedmassatitsend;thereforetheymustberetainedintheexpressionwhenconsideringsuchcases.(18-35)(18-40)三.振型的正交性振型可看作是慣性力幅值作為靜荷載所引起的靜力位移曲線。由虛功互等定理振型對質(zhì)量的正交性表達(dá)式物理意義為i振型上的慣性力在j振型上作的虛功為零。由變形體虛功定理振型對剛度的正交性表達(dá)式當(dāng)體系中有質(zhì)量塊、彈簧等時的情況Clough:振型對剛度的正交性表達(dá)式5.3受迫振動一.振型分解法設(shè)方程的解為運動方程為代入方程,得設(shè)注意到方程兩端乘以并積分----振型j的廣義質(zhì)量----振型j的廣義荷載方程兩端乘以并積分----振型j的廣義質(zhì)量----振型j的廣義荷載令----j振型阻尼比內(nèi)力計算若外力是集中力或集中力偶例:試求圖示梁跨中點穩(wěn)態(tài)振幅。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅。解:二.初速度、初位移引起的振動設(shè)初位移、初速度已知,求位移反應(yīng)。設(shè)方程的解為由和確定例:桿件落到支座時的速度為v0,不反彈,不計阻尼,求位移。解:例:桿件落到支座時的速度為v0,不反彈,不計阻尼,求位移。解:練習(xí)題:振型分解法求圖示體系桿端轉(zhuǎn)角的穩(wěn)態(tài)幅值,不計阻尼。三.簡諧荷載作用下的直接解法運動方程為設(shè)特解為若梁是等截面梁,且q(x)為常數(shù)令例:試求圖示梁跨中點穩(wěn)態(tài)振幅,不計阻尼。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅,不計阻尼。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅,不計阻尼。已知:解:作業(yè)Clough:17-118-4練習(xí)題:試求桿端彎矩穩(wěn)態(tài)幅值,不計阻尼。5.4自振頻率的近似解法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《學(xué)前教育概述》課件
- 單位管理制度集合大合集【人力資源管理篇】十篇
- 單位管理制度分享匯編【員工管理篇】十篇
- 單位管理制度分享大全【人員管理篇】
- 單位管理制度范例選集【員工管理】
- 單位管理制度范例合集【人力資源管理篇】十篇
- 單位管理制度呈現(xiàn)合集【員工管理篇】
- 單位管理制度呈現(xiàn)大合集【人事管理】十篇
- 《微點精析》考向19 文化常識 高考語文一輪復(fù)習(xí)考點微專題訓(xùn)練(原卷+解析)
- 第4單元 民族團(tuán)結(jié)與祖國統(tǒng)一(B卷·能力提升練)(解析版)
- 2023-2024學(xué)年廣東省深圳市光明區(qū)高二(上)期末地理試卷
- 【8地RJ期末】安徽省蕪湖市弋江區(qū)2023-2024學(xué)年八年級上學(xué)期期末考試地理試卷(含解析)
- 2025年春季幼兒園后勤工作計劃
- 鑄牢中華民族共同體意識的培養(yǎng)路徑
- 世界各大洲國家中英文、區(qū)號、首都大全
- 2024-2030年中國波浪發(fā)電商業(yè)計劃書
- 《中國腎性貧血診療的臨床實踐指南》解讀課件
- 申論公務(wù)員考試試題與參考答案(2024年)
- 2024年人教版八年級數(shù)學(xué)上冊期末考試卷(附答案)
- 電大本科《西方經(jīng)濟(jì)學(xué)》期末試題標(biāo)準(zhǔn)題庫及答案(試卷號:1026)
- 泰山產(chǎn)業(yè)領(lǐng)軍人才申報書
評論
0/150
提交評論