山東省菏澤市單縣第五中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
山東省菏澤市單縣第五中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
山東省菏澤市單縣第五中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
山東省菏澤市單縣第五中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
山東省菏澤市單縣第五中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省菏澤市單縣第五中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是三個對數(shù)函數(shù)的圖象,則a、b、c的大小關(guān)系是()A.a>b>c B.c>b>aC.c>a>b D.a>c>b2.函數(shù)()的零點所在的一個區(qū)間是()A. B.C. D.3.已知函數(shù),下列區(qū)間中包含零點的區(qū)間是()A. B.C. D.4.已知條件,條件,則p是q的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.設(shè)函數(shù)與的圖像的交點為,則所在的區(qū)間是()A. B.C. D.6.今有一組實驗數(shù)據(jù)如下:x23456y1.52.012.985.028.98現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)所滿足的規(guī)律,其中最接近的一個是()A. B.C. D.7.已知函數(shù),有下面四個結(jié)論:①的一個周期為;②的圖像關(guān)于直線對稱;③當(dāng)時,的值域是;④在(單調(diào)遞減,其中正確結(jié)論的個數(shù)是()A.1 B.2C.3 D.48.已知集合,,則A.或 B.或C. D.或9.將函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象.A.π6 B.C.2π3 D.10.函數(shù)在的圖象大致為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=1g(2x-1)的定義城為______12.=________13.函數(shù)的定義域是___________.14.經(jīng)過點P(3,2),且在兩坐標(biāo)軸上的截距相等的直線方程為(寫出一般式)___15.已知函數(shù)的圖象恒過定點A,若點A在一次函數(shù)的圖象上,其中,則的最小值為_____________.16.已知直線,則與間的距離為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.節(jié)約資源和保護環(huán)境是中國的基本國策.某化工企業(yè),積極響應(yīng)國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中是指改良工藝的次數(shù).(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;(2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標(biāo).(參考數(shù)據(jù):?。?8.求函數(shù)的最小正周期19.已知函數(shù)是上的奇函數(shù)(1)求;(2)用定義法討論在上的單調(diào)性;(3)若在上恒成立,求的取值范圍20.已知正項數(shù)列的前項和為,且和滿足:(1)求的通項公式;(2)設(shè),求的前項和;(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值21.若=,是第四象限角,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)對數(shù)函數(shù)的圖象與單調(diào)性確定大小【詳解】y=logax的圖象在(0,+∞)上是上升的,所以底數(shù)a>1,函數(shù)y=logbx,y=logcx的圖象在(0,+∞)上都是下降的,因此b,c∈(0,1),又易知c>b,故a>c>b.故選:D2、C【解析】將各區(qū)間的端點值代入計算并結(jié)合零點存在性定理判斷即可.【詳解】由,,,所以,根據(jù)零點存在性定理可知函數(shù)在該區(qū)間存在零點.故選:C3、C【解析】根據(jù)函數(shù)零點的存在性定理,求得,即可得到答案.【詳解】由題意,函數(shù),易得函數(shù)為單調(diào)遞減函數(shù),又由,所以,根據(jù)零點的存在定理,可得零點的區(qū)間是.故選:C.4、B【解析】利用充分條件和必要條件的定義進行判斷【詳解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分條件.故選:B5、B【解析】根據(jù)零點所在區(qū)間的端點值的乘積小于零可得答案.【詳解】函數(shù)與的圖象的交點為,可得設(shè),則是的零點,由,,∴,∴所在的區(qū)間是(1,2).故選:B.6、B【解析】根據(jù)表格中的數(shù)據(jù),作出散點圖,結(jié)合選項和函數(shù)的單調(diào)性,逐項判定,即可求解.【詳解】根據(jù)表格中的數(shù)據(jù),作出散點圖,如圖所示,根據(jù)散點圖可知,隨著的增大,的值增大,并且增長速度越來越快,結(jié)合選項:函數(shù)增長速度越來越緩慢,不符合題意;函數(shù)增長速度越來越快,符合題意;函數(shù),增長速度不變,不符合題意;而函數(shù),當(dāng)時,可得;當(dāng)時,可得,此時與真實數(shù)據(jù)誤差較大,所以最接近的一個函數(shù)是.故選:B.7、B【解析】函數(shù)周期.,故是函數(shù)的對稱軸.由于,故③錯誤.,函數(shù)在不單調(diào).故有個結(jié)論正確.【點睛】本題主要考查三角函數(shù)圖像與性質(zhì),包括了周期性,對稱性,值域和單調(diào)性.三角函數(shù)的周期性,其中正弦和余弦函數(shù)的周期都是利用公式來求解,而正切函數(shù)函數(shù)是利用公式來求解.三角函數(shù)的對稱軸是使得函數(shù)取得最大值或者最小值的地方.對于選擇題8、A【解析】進行交集、補集的運算即可.【詳解】;,或故選A.【點睛】考查描述法的定義,以及交集、補集的運算.9、C【解析】根據(jù)正弦型函數(shù)圖象變換的性質(zhì),結(jié)合零點的定義和正弦型函數(shù)的性質(zhì)進行求解即可.【詳解】因為函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象,所以函數(shù)因為x=0是函數(shù)Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)當(dāng)φ=2kπ(k∈Z)時,因為φ>0,所以φ的最小值是2π,當(dāng)φ=2kπ+2π3(k∈Z)時,因為φ>0,所以φ綜上所述φ的最小值是2π3故選:C10、A【解析】根據(jù)函數(shù)解析式,結(jié)合特殊值,即可判斷函數(shù)圖象.【詳解】設(shè),則,故為上的偶函數(shù),故排除B又,,排除C、D故選:A.【點睛】本題考查圖象識別,注意從函數(shù)的奇偶性、單調(diào)性和特殊點函數(shù)值的正負等方面去判斷,本題屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)對數(shù)函數(shù)定義得2x﹣1>0,求出解集即可.【詳解】∵f(x)=lg(2x﹣1),根據(jù)對數(shù)函數(shù)定義得2x﹣1>0,解得:x>0,故答案為(0,+∞).【點睛】考查具體函數(shù)的定義域的求解,考查了指數(shù)不等式的解法,屬于基礎(chǔ)題12、【解析】利用兩角差的正切公式直接求值即可.【詳解】=故答案為【點睛】本題主要考查兩角差的正切公式,特殊角的三角函數(shù)值,屬于基礎(chǔ)題.13、【解析】利用根式、分式的性質(zhì)求函數(shù)定義域即可.【詳解】由解析式知:,則,可得,∴函數(shù)定義域為.故答案為:.14、x+y-5=0或2x-3y=0【解析】當(dāng)直線經(jīng)過原點時,在兩坐標(biāo)軸上的截距相等,可得其方程為2x﹣3y=0;當(dāng)直線不經(jīng)過原點時,可得它的斜率為﹣1,由此設(shè)出直線方程并代入P的坐標(biāo),可求出其方程為x+y﹣5=0,最后加以綜合即可得到答案【詳解】當(dāng)直線經(jīng)過原點時,設(shè)方程為y=kx,∵直線經(jīng)過點P(3,2),∴2=3k,解之得k,此時的直線方程為yx,即2x﹣3y=0;當(dāng)直線不經(jīng)過原點時,設(shè)方程為x+y+c=0,將點P(3,2)代入,得3+2+c=0,解之得c=﹣5,此時的直線方程為x+y﹣5=0綜上所述,滿足條件的直線方程為:2x﹣3y=0或x+y﹣5=0故答案為:x+y-5=0或2x-3y=0【點睛】本題給出直線經(jīng)過定點且在兩個軸上的截距相等,求直線的方程.著重考查了直線的基本量與基本形式等知識,屬于基礎(chǔ)題15、4【解析】由題意可知定點A(1,1),所以m+n=1,因為,所以,當(dāng)時,的最小值為4.16、【解析】根據(jù)平行線間距離直接計算.【詳解】由已知可得兩直線互相平行,故,故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)至少進行6次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標(biāo).【解析】(1)由題設(shè)可得方程,求出,進而寫出函數(shù)模型;(2)由(1)所得模型,結(jié)合題設(shè),并應(yīng)用對數(shù)的運算性質(zhì)求解不等式,即可知要使該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標(biāo)至少要改良的次數(shù).【詳解】(1)由題意得:,,∴當(dāng)時,,即,解得,∴,故改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型為.(2)由題意得,,整理得:,即,兩邊同時取常用對數(shù),得:,整理得:,將代入,得,又,∴,綜上,至少進行6次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標(biāo).18、【解析】利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式為,利用余弦函數(shù)的周期公式即可計算得解【詳解】先證明出,.因為,同理可證.,,因此,原函數(shù)的最小正周期【點睛】關(guān)鍵點點睛:本題考查余弦型函數(shù)最小正周期的求解,求解的關(guān)鍵就是利用三角恒等變換思想化簡函數(shù)解析式,本題中用到了積化和差公式,,在解題時應(yīng)先給與證明.19、(1);(2)是上的增函數(shù);(3).【解析】(1)利用奇函數(shù)的定義直接求解即可;(2)用函數(shù)的單調(diào)性的定義,結(jié)合指數(shù)函數(shù)的單調(diào)性直接求解即可;(3)利用函數(shù)的奇函數(shù)的性質(zhì)、單調(diào)性原問題可以轉(zhuǎn)化為在上恒成立,利用換元法,再轉(zhuǎn)化為一元二次不等式恒成立問題,分類討論,最后求出的取值范圍.【詳解】(1)函數(shù)是上的奇函數(shù)即即解得;(2)由(1)知設(shè),則故,,故即是上的增函數(shù)(3)是上的奇函數(shù),是上的增函數(shù)在上恒成立等價于等價于在上恒成立即在上恒成立“*”令則“*”式等價于對時恒成立“**”①當(dāng),即時“**”為對時恒成立②當(dāng),即時,“**”對時恒成立須或解得綜上,的取值范圍是【點睛】本題考查了奇函數(shù)的定義,考查了函數(shù)單調(diào)性的定義,考查了指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查了不等式恒成立問題,考查了換元法,考查了數(shù)學(xué)運算能力.20、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)?(an-an-1-2)=0.從而能求出{an}的通項公式;(2)由(1)知,由此利用裂項求和法能求出Tn(3)由(2)知從而得到.由此能求出任意n∈N*,Tn都成立的整數(shù)m的最大值【詳解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論