遼寧省鞍山市第二十六中學2023-2024學年九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第1頁
遼寧省鞍山市第二十六中學2023-2024學年九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第2頁
遼寧省鞍山市第二十六中學2023-2024學年九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第3頁
遼寧省鞍山市第二十六中學2023-2024學年九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第4頁
遼寧省鞍山市第二十六中學2023-2024學年九年級數(shù)學第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省鞍山市第二十六中學2023-2024學年九年級數(shù)學第一學期期末教學質量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.若一次函數(shù)的圖象不經過第二象限,則關于的方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定2.二次函數(shù)的圖象如圖所示,若點A和B在此函數(shù)圖象上,則與的大小關系是()A. B. C. D.無法確定3.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°4.如圖,AB是半圓O的直徑,半徑OC⊥AB于O,AD平分∠CAB交于點D,連接CD,OD,BD.下列結論中正確的是()A.AC∥OD B.C.△ODE∽△ADO D.5.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,若AB=8,AE=1,則弦CD的長是()A. B.2 C.6 D.86.下列圖案中,是中心對稱圖形的是()A. B.

C. D.7.如圖,已知ΔABC~ΔADB,點D是AC的中點,AC=4,則AB的長為()A.2 B.4 C.22 D.8.如圖,在菱形ABCD中,AB=4,按以下步驟作圖:①分別以點C和點D為圓心,大于CD的長為半徑畫弧,兩弧交于點M,N;②作直線MN,且MN恰好經過點A,與CD交于點E,連接BE,則BE的值為()A. B.2 C.3 D.49.根據(jù)阿里巴巴公布的實時數(shù)據(jù),截至年月日時,天貓雙全球狂歡節(jié)總交易額約億元,用科學記數(shù)法表示為()A. B. C. D.10.在平面直角坐標系中,點(﹣3,2)關于原點對稱的點是()A.(2,﹣3) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)11.關于反比例函數(shù),下列說法正確的是()A.點在它的圖象上 B.它的圖象經過原點C.當時,y隨x的增大而增大 D.它的圖象位于第一、三象限12.如圖,是由等腰直角經過位似變換得到的,位似中心在軸的正半軸,已知,點坐標為,位似比為,則兩個三角形的位似中心點的坐標是()A. B. C. D.二、填空題(每題4分,共24分)13.北京時間2019年4月10日21時,人類首張黑洞照片面世,該黑洞位于室女座一個巨橢圓星系M87的中心,距離地球約55000000年,那么55000000用科學記數(shù)法表示為_______.14.如圖,已知等邊的邊長為,,分別為,上的兩個動點,且,連接,交于點,則的最小值_______.15.二次函數(shù)(a<0)圖象與x軸的交點A、B的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結論:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請將結論正確的序號全部填上)16.如圖,在平面直角坐標系xOy中,已知點A(3,3)和點B(7,0),則tan∠ABO=_____.17.分解因式:=__________18.為準備體育中考,甲、乙兩名學生各進行了10次1分鐘跳繩的測試,已知兩名學生10次1分鐘跳繩的平均成績均為160個,甲的方差是80(個),乙的方差是100(個).則這10次1分鐘跳繩測試成績比較穩(wěn)定的學生是________(填“甲”或“乙”).三、解答題(共78分)19.(8分)如圖,一艘游輪在A處測得北偏東45°的方向上有一燈塔B.游輪以20海里/時的速度向正東方向航行2小時到達C處,此時測得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)20.(8分)如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點O為圓心,AD為弦作⊙O.(1)尺規(guī)作圖:作出⊙O(不寫作法與證明,保留作圖痕跡);(2)求證:BC為⊙O的切線.21.(8分)從甲、乙、丙、丁4名同學中隨機抽取同學參加學校的座談會(1)抽取一名同學,恰好是甲的概率為(2)抽取兩名同學,求甲在其中的概率。22.(10分)已知如圖,⊙O的半徑為4,四邊形ABCD為⊙O的內接四邊形,且∠C=2∠A.(1)求∠A的度數(shù).(2)求BD的長.23.(10分)已知,如圖,在Rt△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊作正方形ADEF,連接CF,當點D在線段BC的反向延長線上,且點A,F(xiàn)分別在直線BC的兩側時.(1)求證:△ABD≌△ACF;(2)若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC,求OC的長度.24.(10分)鄭萬高鐵開通后,極大地方便了沿線城市人民的出行.高鐵開通前,從地到地需乘普速列車繞行地,已知,車速為高鐵開通后,可從地乘高鐵以的速度直達地,其中在的北偏東方向,在的南偏東方向.甲、乙兩人分別乘高鐵與普速列車同時從出發(fā)到地,結果乙比甲晚到小時.試求兩地的距離.25.(12分)車輛經過某市收費站時,可以在4個收費通道A、B、C、D中,可隨機選擇其中的一個通過.(1)車輛甲經過此收費站時,選擇A通道通過的概率是;(2)若甲、乙兩輛車同時經過此收費站,請用列表法或樹狀圖法確定甲乙兩車選擇不同通道通過的概率.26.市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績如下表(單位:環(huán)):

第1次

第2次

第3次

第4次

第5次

第6次

10

9

8

8

10

9

10

10

8

10

7

9

(1)根據(jù)表格中的數(shù)據(jù),分別計算出甲、乙兩人的平均成績;(2)分別計算甲、乙六次測試成績的方差;(3)根據(jù)(1)、(2)計算的結果,你認為推薦誰參加省比賽更合適,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【分析】利用一次函數(shù)性質得出k>0,b≤0,再判斷出△=k2-4b>0,即可求解.【詳解】解:一次函數(shù)的圖象不經過第二象限,,,,方程有兩個不相等的實數(shù)根.故選.【點睛】本題考查的是一元二次方程的根的判別式,熟練掌握一次函數(shù)的圖像和一元二次方程根的判別式是解題的關鍵.2、A【分析】由圖象可知拋物線的對稱軸為直線,所以設點A關于對稱軸對稱的點為點C,如圖,此時點C坐標為(-4,y1),點B與點C都在對稱軸左邊,從而利用二次函數(shù)的增減性判斷即可.【詳解】解:∵拋物線的對稱軸為直線,∴設點A關于對稱軸對稱的點為點C,∴點C坐標為(-4,y1),此時點A、B、C的大體位置如圖所示,∵當時,y隨著x的增大而減小,,∴.故選:A.【點睛】本題主要考查了二次函數(shù)的圖象與性質,屬于基本題型,熟練掌握二次函數(shù)的性質是解題關鍵.3、D【解析】分析:直接利用三角形外角的性質以及鄰補角的關系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內角和定理等知識,正確得出∠AOC度數(shù)是解題關鍵.4、A【分析】A.根據(jù)等腰三角形的性質和角平分線的性質,利用等量代換求證∠CAD=∠ADO即可;

B.過點E作EF⊥AC,根據(jù)角平分線上的點到角的兩邊的距離相等可得OE=EF,再根據(jù)直角三角形斜邊大于直角邊可證;

C.兩三角形中,只有一個公共角的度數(shù)相等,其它兩角不相等,所以不能證明③△ODE∽△ADO;

D.根據(jù)角平分線的性質得出∠CAD=∠BAD,根據(jù)在同圓或等圓中,相等的圓周角所對的弦相等,可得CD=BD,又因為CD+BD>BC,又由AC=BC可得AC<2CD,從而可判斷D錯誤.【詳解】解:解:A.∵AB是半圓直徑,

∴AO=OD,

∴∠OAD=∠ADO,

∵AD平分∠CAB交弧BC于點D,

∴∠CAD=∠DAO=∠CAB,

∴∠CAD=∠ADO,

∴AC∥OD,

∴A正確.

B.如圖,過點E作EF⊥AC,

∵OC⊥AB,AD平分∠CAB交弧BC于點D,

∴OE=EF,

在Rt△EFC中,CE>EF,

∴CE>OE,

∴B錯誤.

C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,

∵∠COD=2∠CAD=2∠OAD,

∴∠DOE≠∠DAO,

∴不能證明△ODE和△ADO相似,

∴C錯誤;D.∵AD平分∠CAB交于點D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半徑OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D錯誤.故選A.【點睛】本題主要考查相似三角形的判定與性質,圓心角、弧、弦的關系,圓周角定理,等腰三角形的性質,三角形內角和定理等知識點的靈活運用,此題步驟繁瑣,但相對而言,難易程度適中,很適合學生的訓練.5、B【解析】根據(jù)垂徑定理,構造直角三角形,連接OC,在RT△OCE中應用勾股定理即可.【詳解】試題解析:由題意連接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故選B.6、D【分析】根據(jù)中心對稱圖形的定義逐一進行分析判斷即可.【詳解】A、不是中心對稱圖形,故不符合題意;B、不是中心對稱圖形,故不符合題意;C、不是中心對稱圖形,故不符合題意;D、是中心對稱圖形,故符合題意,故選D.【點睛】本題考查了中心對稱圖形的識別,熟練掌握中心對稱圖形的概念是解題的關鍵.7、C【分析】根據(jù)相似三角形的性質列出比例式求解即可.【詳解】解:∵點D是AC的中點,AC=4,,

∴AD=2,

∵ΔABC~ΔADB,

∴AD∴2∴AB=22,

故選C【點睛】本題考查了相似三角形的性質,能夠根據(jù)相似三角形列出比例式是解答本題的關鍵,難度不大.8、B【解析】由作法得AE垂直平分CD,則∠AED=90°,CE=DE,于是可判斷∠DAE=30°,∠D=60°,作EH⊥BC于H,從而得到∠ECH=60°,利用三角函數(shù)可求出EH、CH的值,再利用勾股定理即可求出BE的長.【詳解】解:如圖所示,作EH⊥BC于H,由作法得AE垂直平分CD,∴∠AED=90°,CE=DE=2,∵四邊形ABCD為菱形,∴AD=2DE,∴∠DAE=30°,∴∠D=60°,∵AD//BC,∴∠ECH=∠D=60°,在Rt△ECH中,EH=CE·sin60°=,CH=CE·cos60°=,∴BH=4+1=5,在Rt△BEH中,由勾股定理得,.故選B.【點睛】本題考查了垂直平分線的性質、菱形的性質、解直角三角形等知識.合理構造輔助線是解題的關鍵.9、A【解析】根據(jù)科學計數(shù)法的表示方法即可得出答案.【詳解】根據(jù)科學計數(shù)法的表示方法可得:2135應該表示為2.135×103,故答案選擇A.【點睛】本題考查的是科學計數(shù)法的表示方式:(,n為正整數(shù)).10、D【詳解】解:由兩個點關于原點對稱,則橫、縱坐標都是原數(shù)的相反數(shù),得點(﹣3,2)關于原點對稱的點是(3,﹣2).故選D.【點睛】本題考查關于原點對稱的點的坐標.11、D【分析】根據(jù)反比例函數(shù)的性質,k=2>0,函數(shù)位于一、三象限,在每一象限y隨x的增大而減?。驹斀狻拷猓篈、把(2,-1)代入,得1=-1不成立,故選項錯誤;B、反比例函數(shù)圖像不經過原點,故選項錯誤;C、當x>0時,y隨x的增大而減小,故選項錯誤.D、∵k=2>0,∴它的圖象在第一、三象限,故選項正確;故選D.【點睛】本題考查了反比例函數(shù)的性質:①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②當k>0時,在同一個象限內,y隨x的增大而減??;當k<0時,在同一個象限,y隨x的增大而增大.12、A【分析】先確定G點的坐標,再結合D點坐標和位似比為1:2,求出A點的坐標;然后再求出直線AG的解析式,直線AG與x的交點坐標,即為這兩個三角形的位似中心的坐標..【詳解】解:∵△ADC與△EOG都是等腰直角三角形∴OE=OG=1∴G點的坐標分別為(0,-1)∵D點坐標為D(2,0),位似比為1:2,∴A點的坐標為(2,2)∴直線AG的解析式為y=x-1∴直線AG與x的交點坐標為(,0)∴位似中心P點的坐標是.故答案為A.【點睛】本題考查了位似中心的相關知識,掌握位似中心是由位似圖形的對應項點的連線的交點是解答本題的關鍵.二、填空題(每題4分,共24分)13、【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將55000000用科學記數(shù)法表示為:5.5×1,故答案為:5.5×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.14、【分析】根據(jù)題意利用相似三角形判定≌,并求出OC的值即有的最小值從而求解.【詳解】解:如圖∵∴≌∴∴點的路徑是一段弧(以點為圓心的圓上)∴∴,∵∴∴所以的最小值【點睛】本題結合相似三角形相關性質考查最值問題,利用等邊三角形以及勾股定理相關等進行分析求解.15、①③.【解析】解:①∵a<0,∴拋物線開口向下,∵圖象與x軸的交點A、B的橫坐標分別為﹣3,1,∴當x=﹣4時,y<0,即16a﹣4b+c<0;故①正確;②∵圖象與x軸的交點A、B的橫坐標分別為﹣3,1,∴拋物線的對稱軸是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由對稱性得:(﹣4.5,y3)與Q(,y2)是對稱點,∴則y1<y2;故②不正確;③∵=﹣1,∴b=2a,當x=1時,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB為等腰三角形,則必須保證AB=BC=4或AB=AC=4或AC=BC,當AB=BC=4時,∵AO=1,△BOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣9=7,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣;同理當AB=AC=4時,∵AO=1,△AOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣1=15,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣;同理當AC=BC時,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程無實數(shù)解.經解方程組可知有兩個b值滿足條件.故⑤錯誤.綜上所述,正確的結論是①③.故答案為①③.點睛:本題考查了等腰三角形的判定、方程組的解、拋物線與坐標軸的交點、二次函數(shù)的圖象與系數(shù)的關系:當a<0,拋物線開口向下;拋物線的對稱軸為直線x=;拋物線與y軸的交點坐標為(0,c),與x軸的交點為(x1,0)、(x2,0).16、.【分析】過A作AC⊥OB于點C,由點的坐標求得OC、AC、OB,進而求BC,在Rt△ABC中,由三角函數(shù)定義便可求得結果.【詳解】解:過A作AC⊥OB于點C,如圖,∵A(3,3),點B(7,0),∴AC=OC=3,OB=7,∴BC=OB﹣OC=4,∴tan∠ABO=,故答案為:.【點睛】本題主要考查了解直角三角形的應用,平面直角坐標系,關鍵是構造直角三角形.17、【解析】分解因式的方法為提公因式法和公式法及分組分解法.原式==a(3+a)(3-a).18、甲【分析】根據(jù)方差的穩(wěn)定性即可求解.【詳解】∵兩名學生10次1分鐘跳繩的平均成績均為160個,甲的方差是80(個),乙的方差是100(個)故成績比較穩(wěn)定的學生是甲故答案為甲.【點睛】此題主要考查數(shù)據(jù)的穩(wěn)定性,解題的關鍵是熟知方差的性質.三、解答題(共78分)19、A處與燈塔B相距109海里.【解析】直接過點C作CM⊥AB求出AM,CM的長,再利用銳角三角函數(shù)關系得出BM的長即可得出答案.【詳解】過點C作CM⊥AB,垂足為M,在Rt△ACM中,∠MAC=90°﹣45°=45°,則∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A處與燈塔B相距109海里.【點睛】本題考查了解直角三角形的應用,正確作出輔助線構造直角三角形是解題的關鍵.20、(1)作圖見解析;(2)證明見解析.【分析】(1)因為AD是弦,所以圓心O即在AB上,也在AD的垂直平分線上,作AD的垂直平分線,與AB的交點即為所求;(2)因為D在圓上,所以只要能證明OD⊥BC就說明BC為⊙O的切線.【詳解】解:(1)如圖所示,⊙O即為所求;(2)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的角平分線,∴∠CAD=∠OAD,∴∠ODA=∠CAD,∴OD∥AC.又∵∠C=90°,∴∠ODB=90°,∴BC是⊙O的切線.【點睛】本題主要考查圓的切線,熟練掌握直線與圓的位置關系是解題的關鍵.21、(1);(2).【解析】(1)由從甲、乙、丙、丁4名同學中抽取同學參加學校的座談會,直接利用概率公式求解即可求得答案;(2)利用列舉法可得抽取2名,可得:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁共6種等可能的結果,甲在其中的有3種情況,然后利用概率公式求解即可求得答案.【詳解】(1)隨機抽取1名學生,可能出現(xiàn)的結果有4種,即甲、乙、丙、丁,并且它們出現(xiàn)的可能性相等,恰好抽取1名恰好是甲的結果有1種,所以抽取一名同學,恰好是甲的概率為,故答案為:;(2)隨機抽取2名學生,可能出現(xiàn)的結果有6種,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它們出現(xiàn)的可能性相等,恰好抽取2名甲在其中的結果有3種,即甲乙、甲丙、甲丁,故抽取兩名同學,甲在其中的概率為=.【點睛】本題考查的是列舉法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)60°;(2).【分析】(1)根據(jù)圓內接四邊形的性質即可得到結論;(2)連接OB,OD,作OH⊥BD于H根據(jù)已知條件得到∠BOD=120°;求得∠OBD=∠ODB=30°,解直角三角形即可得到結論.【詳解】(1)∵四邊形ABCD為⊙O的內接四邊形,∴∠C+∠A=180°,∵∠C=2∠A,∴∠A=60°;(2)連接OB,OD,作OH⊥BD于H∵∠A=60°,∠BOD=2∠A,∴∠BOD=120°;又∵OB=OD,∴∠OBD=∠ODB=30°,∵OH⊥BD于H,在Rt△DOH中,,即,∴,∵OH⊥BD于H,∴.【點睛】此題考查圓的性質,垂徑定理,勾股定理,圓周角定理,在圓中求弦長、半徑、弦心距三個量中的一個時,通常利用勾股定理與垂徑定理進行計算.23、(1)證明見解析;(1)【分析】(1)由題意易得AD=AF,∠DAF=90°,則有∠DAB=∠FAC,進而可證AB=AC,然后問題可證;(1)由(1)可得△ABD≌△ACF,則有∠AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論